Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermediates matrix isolation

Either UV-VIS or IR spectroscopy can be combined with the technique of matrix isolation to detect and identify highly unstable intermediates. In this method, the intomediate is trapped in a solid inert matrix, usually one of the inert gases, at very low temperatures. Because each molecule is surrounded by inert gas atoms, there is no possiblity for intermolecular reactions and the rates of intramolecular reactions are slowed by the low temperature. Matrix isolation is a very useful method for characterizing intermediates in photochemical reactions. The method can also be used for gas-phase reactions which can be conducted in such a way that the intermediates can be rapidly condensed into the matrix. [Pg.227]

In the course of this development, knowledge about low valent (in the sense of formal low oxidation states) reactive intermediates has significantly increased [26-30]. On the basis of numerous direct observations of silylenes (silanediyles), e.g., by matrix isolation techniques, the physical data and reactivities of these intermediates are now precisely known [31], The number of kinetic studies and theoretical articles on reactive intermediates of silicon is still continuously growing... [Pg.3]

The results of low-temperature matrix-isolation studies with 6 [41a] are quite consistent with the photochemical formation of cyclo-Cif, via 1,2-diketene intermediates [59] and subsequent loss of six CO molecules. When 6 was irradiated at A > 338 nm in a glass of 1,2-dichloroethane at 15 K, the strong cyclobut-3-ene-1,2-dione C=0 band at 1792 cm in the FT-IR spectrum disappeared quickly and a strong new band at 2115 cm appeared, which was assigned to 1,2-diketene substructures. Irradiation at A > 280 nm led to a gradual decrease in the intensity of the ketene absorption at 2115 cm and to the appearance of a weak new band at 2138 cm which was assigned to the CO molecules extruded photo-chemically from the 1,2-diketene intermediates. Attempts to isolate cyclo-Cig preparatively by flash vacuum pyrolysis of 6 or low-temperature photolysis of 6 in 2-methyltetrahydrofuran in NMR tubes at liquid-nitrogen temperature have not been successful. [Pg.50]

There are two basic ways of generating unstable species for matrix isolation studies. The first one consists in the formation of intermediates directly in a solid matrix. In the second, the reactive molecules are generated in the gas phase (at very low pressure) with subsequent stabilization by eondensation in an inert matrix at 10-20 K. [Pg.4]

The basic methods of the identification and study of matrix-isolated intermediates are infrared (IR), ultraviolet-visible (UV-vis), Raman and electron spin resonance (esr) spectroscopy. The most widely used is IR spectroscopy, which has some significant advantages. One of them is its high information content, and the other lies in the absence of overlapping bands in matrix IR spectra because the peaks are very narrow (about 1 cm ), due to the low temperature and the absence of rotation and interaction between molecules in the matrix. This fact allows the identification of practically all the compounds present, even in multicomponent reaetion mixtures, and the determination of vibrational frequencies of molecules with high accuracy (up to 0.01 cm when Fourier transform infrared spectrometers are used). [Pg.6]

The absence of overlapping of bands of various matrix-isolated compounds and the possibility of freezing highly reactive intermediates make this method very convenient for the direct study of reaction mechanisms. Additionally, direct IR spectroscopy of intermediates allows estimation of important structural parameters, e.g. valence force fields, which show the character of bonds in these species. [Pg.6]

UV-vis spectra of matrix-isolated intermediates are not so informative as matrix IR spectra. As a rule, an assignment of the UV spectrum to any intermediate follows after the identification of the latter by IR or esr spectroscopy. However, UV-vis spectra may sometimes be especially useful. It is well known, for example, that the energy of electronic transitions in singlet ground-state carbenes differs from that of the triplet species. In this way UV spectroscopy allows one to identify the ground state of the intermediate stabilized in the matrix in particular cases. This will be exemplified below. [Pg.7]

Matrix Raman spectroscopy allows detection of some additional vibrations which are inactive in IR spectra (e.g. symmetrical vibrations vi in AB3 molecules having 3 symmetry) or which tie in the far infrared region. In practice, matrix-isolated organic intermediates have not been studied by Raman spectroscopy the main objects of these investigations are inorganic molecules (AICI3, PbS, Gep2, SiO, etc.) which are evaporated from solids in effusion cells. [Pg.7]

Raman spectroscopy of matrix-isolated molecules carries some difficulties conneeted with the possibility of local heating of the matrix under laser irradiation. Besides, because of the relatively low intensity of Raman bands, higher concentrations of the species to be studied are needed in the matrix (the ratio of matrix gas to reagent = 100-500). As a result, the effective isolation of reactive intermediates is prevented. [Pg.7]

Thus, a more complete study of the spectral properties and the structure of intermediates frozen in inert matrices is achieved when the IR, Raman, UV and esr spectroscopic methods are mutually complementary. Since IR spectroscopy is the most informative method of identification of matrix-isolated molecules, this review is mainly devoted to studies which have been performed using this technique. [Pg.7]

The results described in this review show that matrix stabilization of reactive organic intermediates at extremely low temperatures and their subsequent spectroscopic detection are convenient ways of structural investigation of these species. IR spectroscopy is the most useful technique for the identification of matrix-isolated molecules. Nevertheless, the complete study of the spectral properties and the structure of intermediates frozen in inert matrices is achieved when the IR spectroscopy is combined with UV and esr spectroscopic methods. At present theoretical calculations render considerable assistance for the explanation of the experimental spectra. Thus, along with the development of the experimental technique, matrix studies are becoming more and more complex. This fact allows one to expect further progress in the matrix spectroscopy of many more organic intermediates. [Pg.56]

Until recently, fast time-resolved IR spectroscopy has been a technique fraught with difficulty. Generally it has been easier to use low temperature techniques, particularly matrix isolation (2,4), to prolong the lifetime of the fragments so that conventional spectrometers can be used. In the last 5 years, however, there have been major advances in fast IR spectroscopy. It is now posssible to detect metal carbonyl intermediates at room temperature in both solution and gas phase reactions. In Section II of this article, we explain the principles of these new IR techniques and describe the apparatus involved in some detail. In Section III we give a self-contained summary of the organometallic chemistry that has already been unravelled by time-resolved IR spectroscopy. [Pg.278]

Any new technique relies heavily on what has gone before. In the remainder of this introduction, first we outline briefly the role of matrix isolation in characterizing transition metal fragments and then consider what conventional flash photolysis with uv-vis detection has revealed about the reactivity of these fragments. It is the timescale of these reactions which dictates the speed of the IR spectroscopy required to detect the intermediates. [Pg.278]

Thus, overall, it is clear that flash photolysis with uv-visible detection is effective in establishing the broad outlines of the photochemistry of a particular metal carbonyl. Intermediates can be identified from their reaction kinetics, and sometimes, with the help of uv-vis data from matrix isolation experiments. Structural information from uv-vis flash photolysis is at best sketchy. Many questions remain unanswered. Time-resolved IR measurements can fill in some of these answers. [Pg.283]

IR spectroscopy is a powerful spectroscopic technique for examining the structure and behavior of intermediates involved in organometallic photochemistry. Examples are given of the combination of IR spectroscopy with matrix isolation, with liquid noble gases as solvents, and with flash generation, for probing novel transients and intermediates. [Pg.114]

Although matrix isolation and low-temperature solvents have great potential for identifying intermediates, and for obtaining structural information, and - in the case of the solvents - for obtaining kinetic data, it is necessary to relate these observations to more ordinary conditions, i.e. conventional solvents at room temperature. [Pg.118]

Clearly, mechanistic investigations can provide circumstantial evidence for the participation of particular intermediates in a reaction but, here, we are concerned with the definitive observation of these species. If the intermediates are relatively stable then direct spectroscopic observation of the species during a room-temperature reaction may be possible As a rather extreme example of this, the zero-valent manganese radicals, Mn(CO>3L2 (L phosphine) can be photochemically generated from Mh2(CO)gL2, and, in the absence of O2 or other radical scavengers, are stable in hydrocarbon solution for several weeks (2, 3) However, we are usually more anxious to probe reactions in which unstable intermediates are postulated. There are, broadly speaking, three approaches - continuous generation, instantaneous methods and matrix isolation. [Pg.36]

The photochemical dissociation of Me2Ge from 7,7-dimethyl-l,4,5,6-tetraphenyl-2,3-benzo-7-germanorbomadiene (14) has been studied by flash photolysis, low-temperature matrix isolation and CIDNP 3H NMR techniques30. The results suggest that a biradical (15) is formed as an intermediate species in the photoreaction. The biradical is initially formed in the singlet state, which undergoes conversion to the triplet state before irreversible decomposition to form Me2Ge and tetraphenylnaphthalene (TPN) (reaction 19). [Pg.730]

Earlier, Dunkin and Thomson had observed that matrix-isolated triplet 10a did not undergo photochemical ring expansion.83 However, Morawietz and Sander have recently provided evidence for photochemical conversion of 310a and 310b to the corresponding fluorinated azirines (Scheme 19).48d This represents a rare instance where an azabicyclo[4.1.0]heptatriene, the putative intermediate in the ring expansion of a phenylnitrene, has actually been observed. [Pg.239]

Special spin-trapping techniques are also available for the detection of short-lived radicals in both homogeneous and heterogeneous systems. For instance, a-phenyl A-ferf-butyl nitrone (PBN), ferf-nitrosobutanc (f-NB), -(4-pyridyl A-oxidc) A-ferf-butyl nitrone (4-POBN), or 5,5-dimethyl-l-pyrroline A-oxidc (DMPO) can be made to react with catalytic intermediates to form stable paramagnetic adducts detectable by ESR [135], Radicals evolving into the gas phase can also be trapped directly by condensation or by using matrix isolation techniques [139],... [Pg.19]


See other pages where Intermediates matrix isolation is mentioned: [Pg.3746]    [Pg.3745]    [Pg.379]    [Pg.3746]    [Pg.3745]    [Pg.379]    [Pg.127]    [Pg.1166]    [Pg.11]    [Pg.878]    [Pg.54]    [Pg.2]    [Pg.5]    [Pg.14]    [Pg.27]    [Pg.204]    [Pg.878]    [Pg.457]    [Pg.96]    [Pg.285]    [Pg.312]    [Pg.86]    [Pg.114]    [Pg.201]    [Pg.37]    [Pg.40]    [Pg.151]    [Pg.737]    [Pg.191]    [Pg.208]    [Pg.15]    [Pg.363]   
See also in sourсe #XX -- [ Pg.227 ]

See also in sourсe #XX -- [ Pg.227 ]




SEARCH



Intermediates isolation

Isolated intermediate

Matrix isolation

Matrix isolation in detection of reaction intermediates

Matrix isolation, photochemical intermediates

Reactive intermediates matrix isolation

© 2024 chempedia.info