Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fischer-Tropsch olefins

De Klerk, A. 2007. Effect of oxygenates on the oligomerization of Fischer-Tropsch olefins over amorphous silica-alumina. Energy Fuels 21 625-32. [Pg.361]

De Klerk, A., Engelbrecht, D. J., andBoikanyo, H. 2004. Oligomerization of Fischer-Tropsch olefins Effect of feed and operating conditions on hydrogenated motor-gasoline quality. Ind. Eng. Chem. Res. 43 7449-55. [Pg.362]

Hydrogenation of CO. COj (Fischer-Tropsch), olefins, oximes, nitriles, phenols, ben7)4 alcohols, aryl amines, aromatic heterocycles, cyclopentane. aliphatic ketones, nitrobenzenes, oxidation of hydrocarbons Ammonia synthesis... [Pg.63]

With (alkalized) iron catalysts, the secondary olefin reactions (except some re-adsorption on growth sites) can be (almost) completely absent and high yields of a-olefms are recovered [11, 18]. Thus iron catalysts are used for Fischer-Tropsch olefin production [13]. [Pg.184]

This idea was confirmed by studies on the reaction of ethylene with synthesis gas, (H2 + CO), at 150°-200°C and 150 bar using the standard Fischer-Tropsch cobalt catalyst. Reaction products included propanaldehyde and isopro-panaldehyde. In 1945 Ruhrehemie opened a plant with a capacity of 10,000 toimes/year at Molten, to produce Cn-Cn alcohols from Fischer-Tropsch olefins. These were subsequently converted to detergent sulfates. [Pg.297]

The Fischer-Tropsch reaction is essentially that of Eq. XVIII-54 and is of great importance partly by itself and also as part of a coupled set of processes whereby steam or oxygen plus coal or coke is transformed into methane, olefins, alcohols, and gasolines. The first step is to produce a mixture of CO and H2 (called water-gas or synthesis gas ) by the high-temperature treatment of coal or coke with steam. The water-gas shift reaction CO + H2O = CO2 + H2 is then used to adjust the CO/H2 ratio for the feed to the Fischer-Tropsch or synthesis reactor. This last process was disclosed in 1913 and was extensively developed around 1925 by Fischer and Tropsch [268]. [Pg.730]

Fischer-Tropsch Process. The Hterature on the hydrogenation of carbon monoxide dates back to 1902 when the synthesis of methane from synthesis gas over a nickel catalyst was reported (17). In 1923, F. Fischer and H. Tropsch reported the formation of a mixture of organic compounds they called synthol by reaction of synthesis gas over alkalized iron turnings at 10—15 MPa (99—150 atm) and 400—450°C (18). This mixture contained mostly oxygenated compounds, but also contained a small amount of alkanes and alkenes. Further study of the reaction at 0.7 MPa (6.9 atm) revealed that low pressure favored olefinic and paraffinic hydrocarbons and minimized oxygenates, but at this pressure the reaction rate was very low. Because of their pioneering work on catalytic hydrocarbon synthesis, this class of reactions became known as the Fischer-Tropsch (FT) synthesis. [Pg.164]

SASOL. SASOL, South Africa, has constmcted a plant to recover 50,000 tons each of 1-pentene and 1-hexene by extractive distillation from Fischer-Tropsch hydrocarbons produced from coal-based synthesis gas. The company is marketing both products primarily as comonomers for LLDPE and HDPE (see Olefin polymers). Although there is still no developed market for 1-pentene in the mid-1990s, the 1-hexene market is well estabhshed. The Fischer-Tropsch technology produces a geometric carbon-number distribution of various odd and even, linear, branched, and alpha and internal olefins however, with additional investment, other odd and even carbon numbers can also be recovered. The Fischer-Tropsch plants were originally constmcted to produce gasoline and other hydrocarbon fuels to fill the lack of petroleum resources in South Africa. [Pg.440]

Synthetic Fuels. Hydrocarbon Hquids made from nonpetroleum sources can be used in steam crackers to produce olefins. Fischer-Tropsch Hquids, oil-shale Hquids, and coal-Hquefaction products are examples (61) (see Fuels, synthetic). Work using Fischer-Tropsch catalysts indicates that olefins can be made directly from synthesis gas—carbon monoxide and hydrogen (62,63). Shape-selective molecular sieves (qv) also are being evaluated (64). [Pg.126]

Fischer-Tropsch. Caibon monoxide is catalyticaily hydrogenated to a mixtuie of straight-chain aliphatic, olefinic, and oxygenated hydrocarbon molecules in the Fischer-Tropsch reaction (eq. 11) (see Fuels, synthetic). [Pg.52]

Fischer-Tropsch hydrogenation to a mixture of straight chain aliphatic, olefinic and oxygenated hydrocarbons. Despite an enormous amount of research during the past two decades, this is still not an economically viable process except in special circumstances, such as in South Africa. " ... [Pg.309]

Synthesis gas is an important intermediate. The mixture of carbon monoxide and hydrogen is used for producing methanol. It is also used to synthesize a wide variety of hydrocarbons ranging from gases to naphtha to gas oil using Fischer Tropsch technology. This process may offer an alternative future route for obtaining olefins and chemicals. The hydroformylation reaction (Oxo synthesis) is based on the reaction of synthesis gas with olefins for the production of Oxo aldehydes and alcohols (Chapters 5, 7, and 8). [Pg.123]

Fischer Tropsch technology is best exemplified by the SASOL projects in South Africa. After coal is gasified to a synthesis gas mixture, it is purified in a rectisol unit. The purified gas mixture is reacted in a synthol unit over an iron-based catalyst. The main products are gasoline, diesel fuel, and jet fuels. By-products are ethylene, propylene, alpha olefins, sulfur, phenol, and ammonia which are used for the production of downstream chemicals. [Pg.125]

Epoxides such as ethylene oxide and higher olefin oxides may be produced by the catalytic oxidation of olefins in gas-liquid-particle operations of the slurry type (S7). The finely divided catalyst (for example, silver oxide on silica gel carrier) is suspended in a chemically inactive liquid, such as dibutyl-phthalate. The liquid functions as a heat sink and a heat-transfer medium, as in the three-phase Fischer-Tropsch processes. It is claimed that the process, because of the superior heat-transfer properties of the slurry reactor, may be operated at high olefin concentrations in the gaseous process stream without loss with respect to yield and selectivity, and that propylene oxide and higher... [Pg.77]

Fischer-Tropsch synthesis products contain also high quantities of n-a-olefins that can be recovered by selective sorption processes with suitable molecular sieves [19]. A large-scale Fischer-Tropsch synthesis plant operates in South Africa [20]. Another plant was started in Indonesia in 1993 [21]. [Pg.10]

In 1950 the Fischer-Tropsch synthesis was banned in Germany by the allied forces. Sinarol, a high paraffinic kerosene fraction sold by Shell, was used as a substitute. This ban coincided with the rapid development of the European petrochemical industry, and in due time Fischer-Tropsch synthesis applied to the production of paraffins became uneconomic anyway. After the war there was a steady worldwide increase in the demand for surfactants. In order to continually meet the demand for synthetic detergents, the industry was compelled to find a substitute for /z-paraffin. This was achieved by the oligomerization of the propene part of raffinate gases with phosphoric acid catalyst at 200°C and about 20 bars pressure to produce tetrapropene. Tetrapropene was inexpensive, comprising a defined C cut and an olefinic double bond. Instead of the Lewis acid, aluminum chloride, hydrofluoric acid could now be used as a considerably milder, more economical, and easier-to-handle alkylation catalyst [4],... [Pg.42]

Comparing heterogeneous Fischer-Tropsch synthesis with homogeneous olefin hydroformylation can be seen as a source for understanding catalytic principles, particularly because the selectivity is complex and therefore highly informative. Reliable analytical techniques must be readily available. [Pg.181]

In this chapter a two a selectivity model is proposed that is based on the premise that the total product distribution from an Fe-low-temperature Fischer-Tropsch (LIFT) process is a combination of two separate product spectrums that are produced on two different surfaces of the catalyst. A carbide surface is proposed for the production of hydrocarbons (including n- and iso-paraffins and internal olefins), and an oxide surface is proposed for the production of light hydrocarbons (including n-paraffins, 1-olefins, and oxygenates) and the water-gas shift (WGS) reaction. This model was tested against a number of Fe-catalyzed FT runs with full selectivity data available and with catalyst age up to 1,000 h. In all cases the experimental observations could be justified in terms of the model proposed. [Pg.185]

A continuous cross-flow filtration process has been utilized to investigate the effectiveness in the separation of nano sized (3-5 nm) iron-based catalyst particles from simulated Fischer-Tropsch (FT) catalyst/wax slurry in a pilot-scale slurry bubble column reactor (SBCR). A prototype stainless steel cross-flow filtration module (nominal pore opening of 0.1 pm) was used. A series of cross-flow filtration experiments were initiated to study the effect of mono-olefins and aliphatic alcohol on the filtration flux and membrane performance. 1-hexadecene and 1-dodecanol were doped into activated iron catalyst slurry (with Polywax 500 and 655 as simulated FT wax) to evaluate the effect of their presence on filtration performance. The 1-hexadecene concentrations were varied from 5 to 25 wt% and 1-dodecanol concentrations were varied from 6 to 17 wt% to simulate a range of FT reactor slurries reported in literature. The addition of 1-dodecanol was found to decrease the permeation rate, while the addition of 1-hexadecene was found to have an insignificant or no effect on the permeation rate. [Pg.270]

Iron-based Fischer-Tropsch synthesis (FTS) catalysts are preferred for synthesis gas with a low H2/CO ratio (e.g., 0.7) because of their excellent activity for the water-gas shift reaction, lower cost, lower methane selectivity, high olefin... [Pg.270]

Schulz, H., and Claeys, M. 1999. Reactions of a-olefins of different chain length added during Fischer-Tropsch synthesis on a cobalt catalyst in a slurry reactor. Appl. Catal. A 186 71-90. [Pg.315]

Oxygenates and olefins are key compound classes in Fischer-Tropsch refining. [Pg.332]

The first commercial Fischer-Tropsch facility was commissioned in 1935, and by the end of the Second World War a total of fourteen plants had been constructed. Of these, nine were in Germany, one in France, three in Japan, and one in China. Both German normal-pressure and medium-pressure processes (Table 18.1) were employed. The cobalt-based low-temperature Fischer-Tropsch (Co-LTFT) syncrude produced in these two processes differed slightly (Table 18.2), with the product from the medium-pressure process being heavier and less olefinic.11 In addition to the hydrocarbon product, the syncrude also contained oxygenates, mostly alcohols and carboxylic acids. [Pg.334]

Olefins in the C3-320°C range had significant synthetic value, and additional olefins were produced by thermal cracking in some facilities. Acid-catalyzed and thermal olefin oligomerization were important technologies for the upgrading of Fischer-Tropsch products. [Pg.337]

Production of chemicals became increasingly important. The recovery of oxygenates from the Fischer-Tropsch aqueous product was expanded to include niche chemicals, such as 1-propanol.45 Ethylene and propylene extraction was increased and even supplemented by the addition of a high-temperature catalytic cracker.46 Linear a-olefin extraction units for the recovery of 1-pentene, 1-hexene, and 1-octene were added to the refinery,45-47 and a new facility for the extraction of 1-heptene and its... [Pg.349]

Diesel production involved a straightforward design. The olefinic distillate from olefin oligomerization was combined with the straight-run HTFT distillate and hydrotreated. The hydrotreated Fischer-Tropsch-derived distillate was blended with the distillate fraction from the natural gas liquids to produce diesel fuel. In 2003 another hydrotreater (noble metal catalyst) was added to the refinery to convert part of the hydrotreated HTFT distillate into low aromatic distillate to serve a niche market.56... [Pg.353]

The design intent was to produce transportation fuels, and the design did not specifically make provision for chemicals co-production. It is in principle possible to extract chemicals from the HTFT syncrude, such as the alcohols that are being recovered from the Fischer-Tropsch aqueous product. Extraction of linear a-olefins may also be considered, which has indeed been investigated,57 and many other opportunities exist. However, it should be noted that the Mossgas facility is much smaller than the Sasol Synfuels facility, and recovery of valuable products in HTFT syncrude may not have economy of scale. [Pg.353]


See other pages where Fischer-Tropsch olefins is mentioned: [Pg.5]    [Pg.590]    [Pg.5]    [Pg.590]    [Pg.225]    [Pg.465]    [Pg.506]    [Pg.290]    [Pg.444]    [Pg.2094]    [Pg.2377]    [Pg.337]    [Pg.86]    [Pg.24]    [Pg.209]    [Pg.233]    [Pg.120]    [Pg.165]    [Pg.166]    [Pg.179]    [Pg.295]    [Pg.332]    [Pg.335]    [Pg.344]    [Pg.351]   
See also in sourсe #XX -- [ Pg.225 ]




SEARCH



© 2024 chempedia.info