Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst activity 9, 125 - iron

Selectivity is primarily a function of temperature. The amount of by-products tends to increase as the operating temperature is raised to compensate for declining catalyst activity. By-product formation is also influenced by catalyst impurities, whether left behind during manufacture or otherwise introduced into the process. Alkaline impurities cataly2e higher alcohol production whereas acidic impurities, as well as trace iron and nickel, promote heavier hydrocarbon formation. [Pg.276]

The industrial catalysts for ammonia synthesis consist of far more than the catalyticaHy active iron (74). There are textural promoters, alumina and calcium oxide, that minimise sintering of the iron and a chemical promoter, potassium (about 1 wt % of the catalyst), and possibly present as K2O the potassium is beheved to be present on the iron surface and to donate electrons to the iron, increasing its activity for the dissociative adsorption of N2. The primary iron particles are about 30 nm in size, and the surface area is about 15 m /g. These catalysts last for years. [Pg.177]

Palladium and platinum (5—10 wt % on activated carbon) can be used with a variety of solvents as can copper carbonate on siHca and 60 wt % nickel on kieselguhr. The same is tme of nonsupported catalysts copper chromite, rhenium (VII) sulfide, rhenium (VI) oxide, and any of the Raney catalysts, copper, iron, or nickel. [Pg.200]

The paper-impregnation drying oven exhausts contain high concentrations (10—20% LEL) of alcohols and some resin monomer. Vinyl resins and melamine resins, which sometimes also contain organic phosphate fire retardants, may be used for air filters. The organic phosphates could shorten catalyst life depending on the mechanism of reduction of catalyst activity. Mild acid leaching removes iron and phosphoms from partially deactivated catalyst and has restored activity in at least one known case. [Pg.515]

The cationic aqua complexes prepared from traws-chelating tridentate ligand, R,R-DBFOX/Ph, and various transition metal(II) perchlorates induce absolute enantio-selectivity in the Diels-Alder reactions of cyclopentadiene with 3-alkenoyl-2-oxazoli-dinone dienophiles. Unlike other bisoxazoline type complex catalysts [38, 43-54], the J ,J -DBFOX/Ph complex of Ni(C104)2-6H20, which has an octahedral structure with three aqua ligands, is isolable and can be stored in air for months without loss of catalytic activity. Iron(II), cobalt(II), copper(II), and zinc(II) complexes are similarly active. [Pg.250]

Allison, M. and Bennet, A., Novel, Highly Active Iron and Cobalt Catalysts for Olefin Polymerization, CHEMTECH, July, 1999, pp. 24-28. [Pg.321]

Due to the efficiency with which the iron catalysts activate the C-Cl bond, several functional groups are tolerated that normally would react with a Grignard reagent. [Pg.19]

In this work, catalysts containing iron supported on activated carbon were prepared and investigated for their catalytic performance in the direct production of phenol fiom benzene with hydrogen peroxide and the effect of Sn addition to iron loaded on activated carbon catalyst were also studied. [Pg.278]

Nitrogen adsorption experiments showed a typical t)q5e I isotherm for activated carbon catalysts. For iron impregnated catalysts the specific surface area decreased fix>m 1088 m /g (0.5 wt% Fe ) to 1020 m /g (5.0 wt% Fe). No agglomerization of metal tin or tin oxide was observed from the SEM image of 5Fe-0.5Sn/AC catalyst (Fig. 1). In Fig. 2 iron oxides on the catalyst surface can be seen from the X-Ray diffractions. The peaks of tin or tin oxide cannot be investigated because the quantity of loaded tin is very small and the dispersion of tin particle is high on the support surface. [Pg.278]

The most difficult problem to solve in the design of a Fischer-Tropsch reactor is its very high exothermicity combined with a high sensitivity of product selectivity to temperature. On an industrial scale, multitubular and bubble column reactors have been widely accepted for this highly exothermic reaction.6 In case of a fixed bed reactor, it is desirable that the catalyst particles are in the millimeter size range to avoid excessive pressure drops. During Fischer-Tropsch synthesis the catalyst pores are filled with liquid FT products (mainly waxes) that may result in a fundamental decrease of the reaction rate caused by pore diffusion processes. Post et al. showed that for catalyst particle diameters in excess of only about 1 mm, the catalyst activity is seriously limited by intraparticle diffusion in both iron and cobalt catalysts.1... [Pg.216]

A continuous cross-flow filtration process has been utilized to investigate the effectiveness in the separation of nano sized (3-5 nm) iron-based catalyst particles from simulated Fischer-Tropsch (FT) catalyst/wax slurry in a pilot-scale slurry bubble column reactor (SBCR). A prototype stainless steel cross-flow filtration module (nominal pore opening of 0.1 pm) was used. A series of cross-flow filtration experiments were initiated to study the effect of mono-olefins and aliphatic alcohol on the filtration flux and membrane performance. 1-hexadecene and 1-dodecanol were doped into activated iron catalyst slurry (with Polywax 500 and 655 as simulated FT wax) to evaluate the effect of their presence on filtration performance. The 1-hexadecene concentrations were varied from 5 to 25 wt% and 1-dodecanol concentrations were varied from 6 to 17 wt% to simulate a range of FT reactor slurries reported in literature. The addition of 1-dodecanol was found to decrease the permeation rate, while the addition of 1-hexadecene was found to have an insignificant or no effect on the permeation rate. [Pg.270]

Application of cross-flow filtration for the removal of FT wax products can be a useful technique to maintain a constant catalyst loading in an FTS reactor in continuous operation. Addition of 1-dodecanol (at a concentration of 6 wt%) was found to decrease the permeation rate of the cross-flow filter used for the separation of simulated FT wax and activated iron catalyst slurry. However, additional... [Pg.290]

In addition, cyclodextrins incorporating a 2,6-bis(imino)pyridine unit have been used to support active iron polymerisation catalysts. Using the (i-cyclodextrin-based system 52, in the presence of a large excess of MAO, ethylene can be converted into HDPE (Fig. 16). Only low activities are, however, observed, which... [Pg.142]

The conversion of iron catalysts into iron carbide under Fischer-Tropsch conditions is well known and has been the subject of several studies [20-23], A fundamentally intriguing question is why the active iron Fischer-Tropsch catalyst consists of iron carbide, while cobalt, nickel and ruthenium are active as a metal. Figure 5.9 (left) shows how metallic iron particles convert to carbides in a mixture of CO and H2 at 515 K. After 0.5 and 1.1 h of reaction, the sharp six-line pattern of metallic iron is still clearly visible in addition to the complicated carbide spectra, but after 2.5 h the metallic iron has disappeared. At short reaction times, a rather broad spectral component appears - better visible in carburization experiments at lower temperatures - indicated as FexC. The eventually remaining pattern can be understood as the combination of two different carbides -Fe2.2C and %-Fe5C2. [Pg.143]

Monitoring solid state reactions that play a role in catalyst activation forms a useful application of XRD. The example discussed above concerns a catalyst with large iron oxide particles as is used in the water gas shift reaction, and represents a particularly favorable system for XRD analysis. Similar studies with small particles are certainly also feasible, although it may be advisable to use laboratory X-ray sources of higher energy, such as Mo Ka, or a synchrotron [13]. [Pg.159]


See other pages where Catalyst activity 9, 125 - iron is mentioned: [Pg.216]    [Pg.232]    [Pg.225]    [Pg.508]    [Pg.2375]    [Pg.1128]    [Pg.309]    [Pg.743]    [Pg.744]    [Pg.104]    [Pg.156]    [Pg.131]    [Pg.405]    [Pg.281]    [Pg.143]    [Pg.148]    [Pg.107]    [Pg.122]    [Pg.123]    [Pg.130]    [Pg.133]    [Pg.138]    [Pg.86]    [Pg.191]    [Pg.214]    [Pg.106]    [Pg.738]    [Pg.177]    [Pg.449]    [Pg.326]    [Pg.182]    [Pg.49]    [Pg.85]    [Pg.19]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Iron activation

Iron active

Iron, catalyst

© 2024 chempedia.info