Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fischer iron-based

Sasol Fischer-Tropsch Process. 1-Propanol is one of the products from Sasol s Fischer-Tropsch process (7). Coal (qv) is gasified ia Lurgi reactors to produce synthesis gas (H2/CO). After separation from gas Hquids and purification, the synthesis gas is fed iato the Sasol Synthol plant where it is entrained with a powdered iron-based catalyst within the fluid-bed reactors. The exothermic Fischer-Tropsch reaction produces a mixture of hydrocarbons (qv) and oxygenates. The condensation products from the process consist of hydrocarbon Hquids and an aqueous stream that contains a mixture of ketones (qv) and alcohols. The ketones and alcohols are recovered and most of the alcohols are used for the blending of high octane gasoline. Some of the alcohol streams are further purified by distillation to yield pure 1-propanol and ethanol ia a multiunit plant, which has a total capacity of 25,000-30,000 t/yr (see Coal conversion processes, gasification). [Pg.119]

Fischer Tropsch technology is best exemplified by the SASOL projects in South Africa. After coal is gasified to a synthesis gas mixture, it is purified in a rectisol unit. The purified gas mixture is reacted in a synthol unit over an iron-based catalyst. The main products are gasoline, diesel fuel, and jet fuels. By-products are ethylene, propylene, alpha olefins, sulfur, phenol, and ammonia which are used for the production of downstream chemicals. [Pg.125]

Redox titrants (mainly in acetic acid) are bromine, iodine monochloride, chlorine dioxide, iodine (for Karl Fischer reagent based on a methanolic solution of iodine and S02 with pyridine, and the alternatives, methyl-Cellosolve instead of methanol, or sodium acetate instead of pyridine (see pp. 204-205), and other oxidants, mostly compounds of metals of high valency such as potassium permanganate, chromic acid, lead(IV) or mercury(II) acetate or cerium(IV) salts reductants include sodium dithionate, pyrocatechol and oxalic acid, and compounds of metals at low valency such as iron(II) perchlorate, tin(II) chloride, vanadyl acetate, arsenic(IV) or titanium(III) chloride and chromium(II) chloride. [Pg.297]

Rao, V. U. S., Stiegel, G. J., Cinquegrane, G. J., and Srivastava, R. D. 1992. Iron-based catalysts for slurry-phase Fischer-Tropsch process Technology review. Fuel Process. Technol. 30 83-107. [Pg.76]

The aim of this work was to apply combined temperature-programmed reduction (TPR)/x-ray absorption fine-structure (XAFS) spectroscopy to provide clear evidence regarding the manner in which common promoters (e.g., Cu and alkali, like K) operate during the activation of iron-based Fischer-Tropsch synthesis catalysts. In addition, it was of interest to compare results obtained by EXAFS with earlier ones obtained by Mossbauer spectroscopy to shed light on the possible types of iron carbides formed. To that end, model spectra were generated based on the existing crystallography literature for four carbide compounds of... [Pg.120]

Ngantsoue-Hoc, W., Zhang, Y., O Brien, R.J., Luo, M., and Davis, B.H. 2002. Fischer-Tropsch synthesis Activity and selectivity for Group I alkali promoted iron-based catalysts. Appl. Catal. 236 77-89. [Pg.145]

Li, S., Li, A., Krishnamoorthy, S., and Iglesia, E. 2001. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts. Catal. Lett. 77 197-205. [Pg.145]

The use of a Fischer-Tropsch (FT) process to produce long-chain hydrocarbons is well known in industry, and achieving the desired selectivity from the FT reaction is crucial for the process to make economic sense. It is, however, well known that a one-alpha model does not describe the product spectrum well. From either a chemicals or fuels perspective, hydrocarbon selectivity in the FT process needs to be thoroughly understood in order to manipulate process conditions and allow the optimization of the required product yield to maximize the plant profitability. There are many unanswered questions regarding the selectivity of the iron-based low-temperature Fischer-Tropsch (Fe-LTFT) synthesis. [Pg.229]

Govender, N.S., Janse van Vuuren, M., Claeys, M., Van Steen, E. 2006. Importance of the usage ratio in iron-based Fischer-Tropsch synthesis with recycle. Ind. Eng. Chem. Res. 45 8629. [Pg.241]

Botes, F.G. 2007. Proposal of a new product characterisation model for the iron-based low-temperature Fischer Tropsch synthesis. Energy Fuels 21 1379. [Pg.241]

A continuous cross-flow filtration process has been utilized to investigate the effectiveness in the separation of nano sized (3-5 nm) iron-based catalyst particles from simulated Fischer-Tropsch (FT) catalyst/wax slurry in a pilot-scale slurry bubble column reactor (SBCR). A prototype stainless steel cross-flow filtration module (nominal pore opening of 0.1 pm) was used. A series of cross-flow filtration experiments were initiated to study the effect of mono-olefins and aliphatic alcohol on the filtration flux and membrane performance. 1-hexadecene and 1-dodecanol were doped into activated iron catalyst slurry (with Polywax 500 and 655 as simulated FT wax) to evaluate the effect of their presence on filtration performance. The 1-hexadecene concentrations were varied from 5 to 25 wt% and 1-dodecanol concentrations were varied from 6 to 17 wt% to simulate a range of FT reactor slurries reported in literature. The addition of 1-dodecanol was found to decrease the permeation rate, while the addition of 1-hexadecene was found to have an insignificant or no effect on the permeation rate. [Pg.270]

Iron-based Fischer-Tropsch synthesis (FTS) catalysts are preferred for synthesis gas with a low H2/CO ratio (e.g., 0.7) because of their excellent activity for the water-gas shift reaction, lower cost, lower methane selectivity, high olefin... [Pg.270]

At this point, the system was tested with catalyst for activation and FTS, in the hopes that the seal leak rates would be impeded by the presence of small catalyst particles. The FTFE 20-B catalyst (L-3950) (Fe, 50.2% Cu, 4.2% K, 1.5% and Si, 2.4%) was utilized. This is part of the batch used for LaPorte FTS run II.20 The catalyst was activated at 543 K with CO at a space velocity (SV) of 9 sl/h/g catalyst for 48 h. A total of 1,100 g of catalyst was taken and 7.9 L of C30 oil was used as the start-up solvent. At the end of the activation period, an attempt was made for Fischer-Tropsch synthesis at 503 K, 175 psig, syngas SV = 9 sl/h/g catalyst, and H2/CO = 0.7. However, the catalyst was found to be completely inactive for Fischer-Tropsch synthesis. Potential reasons for catalyst poisoning under present experimental conditions were investigated. Sulfur and fluorine are known to poison iron-based Fischer-Tropsch catalysts.21,22 Since the stator of the pump is... [Pg.287]

Iron-based high-temperature Fischer-Tropsch (Fe-HTFT)... [Pg.333]

After the Second World War a gas-to-liquids facility that employed an iron-based high-temperature Fischer-Tropsch (Fe-HTFT) process was constructed at Brownsville, Texas. The technology was developed by Hydrocarbon Research, Inc.,20 and the commercial facility was operated by the Carthage Hydrocol Company. The Hydrocol plant was in commercial operation during the period 1951-1957, and it was shut down mainly for economic reasons (the oil price was around US 2 per barrel at that time). [Pg.337]

In many respects the SMDS process (Figure 18.8) precipitated a change in the Fischer-Tropsch community with respect to the preferred catalyst for Fischer-Tropsch synthesis and the approach to product workup. It is therefore instructive to understand why Shell moved away from iron-based Fischer-Tropsch catalysts (and as a consequence also high-temperature synthesis) and opted for a Co-LTFT process with an uncomplicated refinery design that does not produce... [Pg.354]

Short-chain olefins are not refined and the gaseous LTFT products are employed as fuel gas. Production of this fraction is limited by Co-LTFT synthesis, and with the product being less olefinic than iron-based Fischer-Tropsch syncrude, less benefit would be derived from the inclusion of an olefin oligomerization unit. Furthermore, adding complexity would go against the design objectives of the SMDS process. [Pg.356]

The two important discoveries in the search for iron-based Fischer-Tropsch catalysts were (a) the finding that the addition of alkali yielded significant improvements in the activity and selectivity (to liquid products) of iron catalysts (15), and (b) the development of the medium-pressure synthesis (16). In 1943 a pilot plant was constructed at Schwarz-Leide in Germany for the comparative testing of iron-based catalysts. However, the outcome of World War II curtailed its activities. After 1945 many of the plants were destroyed and, for those remaining, recommencement of operation was forbidden for several years. Of the three plants restarted, the last at Bergkamen was closed in 1962. [Pg.63]

Iron-based catalysts have been used in all the plants constructed after the war, because (a) iron is considerably cheaper than cobalt, (b) iron systems are generally more stable, and (c) greater flexibility with regard to product distribution can be attained. With the exception of the SASOL complex, which will be dealt with in Section I,B, the only Fischer-Tropsch plant of any appreciable size constructed in the West since the... [Pg.63]

The data available for heterogeneous Fischer-Tropsch catalysts indicate that with cobalt-based catalysts the rate of the water gas-shift reaction is very slow under the synthesis conditions (5). Thus, water is formed together with the hydrocarbon products [Eq. (14)]. The iron-based catalysts show some shift activity, but even with these catalysts, considerable quantities of water are produced. [Pg.84]

Manganese is considered a promoter of iron-based catalysts for Fischer-Tropsch synthesis because the addition of Mn to iron catalysts increases the selechvity to olefins. [Pg.326]

Mn-promoted Fe-based Fischer-Tropsch Catalysts. 4.1.1 Unsupported Fe-Mn Fischer-Tropsch Catalysts. Iron-based F-T catalysts possess both hydrogenation and WGS activity, imposing a flexible option as a working catalyst for typically coal-derived CO-rich syngas conversion. Iron-based catalysts often contain small amounts of K and some other metals/metal oxides as promoters to improve their activity and selectivity. Mn has been widely used as one of the promoters for unsuppported Fe-based F T catalysts, particularly in promoting the production of C2 C4 olefins. ... [Pg.32]

Catalysts of commercial significance are either iron-based or cobalt-based. Iron-based catalysts are typically not supported, whereas cobalt-based catalysts are usually supported on alumina, silica, or a similar material. The three-phase low-temperature Fischer-Tropsch (LTFT) technology can be operated in either... [Pg.895]


See other pages where Fischer iron-based is mentioned: [Pg.366]    [Pg.160]    [Pg.431]    [Pg.2375]    [Pg.2377]    [Pg.337]    [Pg.120]    [Pg.148]    [Pg.230]    [Pg.271]    [Pg.64]    [Pg.126]    [Pg.91]    [Pg.431]    [Pg.81]    [Pg.403]    [Pg.404]    [Pg.194]    [Pg.472]    [Pg.327]    [Pg.452]    [Pg.456]    [Pg.155]    [Pg.2130]    [Pg.2132]   
See also in sourсe #XX -- [ Pg.148 ]




SEARCH



Iron bases

© 2024 chempedia.info