Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Filtration cross flow

Filtration Cross-flow filtration (microfiltration includes cross-flow filtration as one mode of operation in Membrane Separation Processes which appears earlier in this section) relies on the retention of particles by a membrane. The driving force for separation is pressure across a semipermeable membrane, while a tangential flow of the feed stream parallel to the membrane surface inhibits solids settling on and within the membrane matrix (Datar and Rosen, loc. cit.). [Pg.2058]

Axial filtration. In most of our bench-scale filtrations cross flow was effected by use of axial filters (10). In this configuration (Figure 4), a membrane is wrapped around a rotor, which is spun in a chamber, into which feed is introduced under pressure. The rotor is perforated, and passages are provided for filtrate (e.g., by an intervening screen) from the membrane to these holes. Filtrate exits through the axis. Rotation speeds providing velocities of up to about 15 ft/sec at the membrane-feed interface can be attained in available equipment. [Pg.176]

Filtration Cross flow Cross flow Cross flow or Cross flow Dead end Dead end... [Pg.113]

Most membrane processes operate by means of cross-flow filtration, in which only part of the fluid passes through the membrane as filtrate (or, more correctly, permeate, since some membrane processes operate by permeation rather than filtration) the retained part, the concentrate or retentate, conseqnently becomes more concentrated in particulate or solute species. Membrane systems are frequently operated in a closed loop, with the retentate recycled, and final concentrate is taken from the loop in proportion to the added feed suspension. Whereas microfiltration utilizes both through-flow and cross-flow filtration, cross-flow is the nsnal mode for the other membrane filtration processes, and has thereby grown to its present level of importance. [Pg.195]

In situations where a low concentration of suspended solids needs to be separated from a liquid, then cross-flow filtration can be used. The most common design uses a porous tube. The suspension is passed through the tube at high velocity and is concentrated as the liquid flows through the porous medium. The turbulent flow prevents the formation of a filter cake, and the solids are removed as a more concentrated slurry. [Pg.74]

The advantage of single-pass over cross-flow filtration is that it is an easier system to operate and can be cost effective, particularly if the product to be filtered is expensive, because very tittle of the initial fluid is lost during filtration. However, because the flow pattern of the fluid is directly through the filter, filter life maybe too short for the fluid being filtered. The minimum flow rate needed downstream of the filter must also be considered, especially when there are time constraints to the process. In some situations it may be more advantageous to use a cross-flow system where higher flow rates may be easier to obtain. [Pg.143]

Mechanical Cake Removal. This method is used in the American version of the dynamic filter described under cross-flow filtration with rotating elements, where turbine-type rotors are used to limit the cake thickness at low speeds. The Exxflow filter, introduced in the United Kingdom, is described in more detail under cross-flow filtration in porous pipes. It uses, among other means, a roUer cleaning system which periodically roUs over a curtain of flexible pipes and dislodges any cake on the inside of the pipes. The cake is then flushed out of the curtain by the internal flow. [Pg.409]

Cross-Flow Filtration in Porous Pipes. Another way of limiting cake growth is to pump the slurry through porous pipes at high velocities of the order of thousands of times the filtration velocity through the walls of the pipes. This is ia direct analogy with the now weU-estabHshed process of ultrafiltration which itself borders on reverse osmosis at the molecular level. The three processes are closely related yet different ia many respects. [Pg.412]

The idea of ultrafiltration has been extended ia recent years to the filtration of particles ia the micrometer and submicrometer range ia porous pipes, usiag the same cross-flow principle. In order to prevent blocking, thicker flow channels are necessary, almost exclusively ia the form of tubes. The process is often called cross-flow microfiltration but the term cross-flow filtration is used here. [Pg.412]

Other iavestigations of cross-flow filtration iaclude the study of the coaceatratioa of bacteria (41), the coaceatratioa of fermentation cell debris (42), the coaceatratioa of electrocoatiag paiat (43), the chemical effects oa cross-flow filtratioa of primary sewage efflueat (44), and the use of tubes of different materials, dimensions, and porosity with several slurries (45). [Pg.412]

A. E. Ostermann and E. Pfleiderer, "AppHcation of the Principle of Cross-Flow in SoHd/Liquid Microfiltration," in the Proceedings of the Symposium on Economic Optimi tion Strategy in SolidjFiquid Separation Processes, SocifitH Beige de Filtration, Louvaine-la-Neuve, Belgium, Nov. 1981, pp. 123-138. [Pg.415]

Fig. 28. Schematic representation of dead-end and cross-flow filtration with microfiltration membranes. The equipment used in dead-end filtration is simple, but retained particles plug the membranes rapidly. The equipment required for cross-flow filtration is more complex, but the membrane lifetime is... Fig. 28. Schematic representation of dead-end and cross-flow filtration with microfiltration membranes. The equipment used in dead-end filtration is simple, but retained particles plug the membranes rapidly. The equipment required for cross-flow filtration is more complex, but the membrane lifetime is...
Anodic deposition is controlled by either fluid shear (cross-flow filtration) (48), similar to gel-polarization control, or by continual anode replacement (electrodeposited paints) (46). High fluid shear rates can cause deviations from theory when E > (49). The EUF efficiency drops rapidly... [Pg.300]

Cross-flow-elec trofiltratiou (CF-EF) is the multifunctional separation process which combines the electrophoretic migration present in elec trofiltration with the particle diffusion and radial-migration forces present in cross-flow filtration (CFF) (microfiltration includes cross-flow filtration as one mode of operation in Membrane Separation Processes which appears later in this section) in order to reduce further the formation of filter cake. Cross-flow-electrofiltratiou can even eliminate the formation of filter cake entirely. This process should find application in the filtration of suspensions when there are charged particles as well as a relatively low conduc tivity in the continuous phase. Low conductivity in the continuous phase is necessary in order to minimize the amount of elec trical power necessaiy to sustain the elec tric field. Low-ionic-strength aqueous media and nonaqueous suspending media fulfill this requirement. [Pg.2008]

FIG. 22-27 Alternative electrode configurations for cross-flow-electro-filtration. [Pg.2009]

Theory Cross-flow-elecfrofiltration can theoretically be treated as if it were cross-flow filtration with superimposed electrical effects. These electrical effects include elecfroosmosis in the filter medium and cake and elecfrophoresis of the particles in the shiny. The addition of the applied electric field can, nowever, result in some quahta-tive differences in permeate-flux-parameter dependences. [Pg.2009]

The resistances, when incorporated into equations descriptive of cross-flow filtration, yield the general expression for the permeate flux for particulate suspensions in cross-flow-electrofiltration systems. [Pg.2009]

Process Description Microfiltration (MF) separates particles from true solutions, be they liquid or gas phase. Alone among the membrane processes, microfiltration may be accomplished without the use of a membrane. The usual materi s retained by a microfiltra-tion membrane range in size from several [Lm down to 0.2 [Lm. At the low end of this spectrum, very large soluble macromolecules are retained by a microfilter. Bacteria and other microorganisms are a particularly important class of particles retained by MF membranes. Among membrane processes, dead-end filtration is uniquely common to MF, but cross-flow configurations are often used. [Pg.2043]


See other pages where Filtration cross flow is mentioned: [Pg.528]    [Pg.181]    [Pg.73]    [Pg.135]    [Pg.528]    [Pg.181]    [Pg.73]    [Pg.135]    [Pg.261]    [Pg.44]    [Pg.50]    [Pg.143]    [Pg.406]    [Pg.387]    [Pg.387]    [Pg.409]    [Pg.409]    [Pg.409]    [Pg.412]    [Pg.412]    [Pg.78]    [Pg.78]    [Pg.26]    [Pg.2008]    [Pg.2008]    [Pg.2009]    [Pg.2009]    [Pg.2038]    [Pg.2044]    [Pg.2045]    [Pg.2045]    [Pg.2046]    [Pg.2046]   
See also in sourсe #XX -- [ Pg.74 ]

See also in sourсe #XX -- [ Pg.147 , Pg.153 , Pg.216 ]

See also in sourсe #XX -- [ Pg.66 ]

See also in sourсe #XX -- [ Pg.226 ]

See also in sourсe #XX -- [ Pg.412 ]

See also in sourсe #XX -- [ Pg.226 ]




SEARCH



Bubbles cross-flow filtration

Cross flow

Cross-flow filtration downstream processing

Cross-flow filtration reactor

Cross-flow filtration techniqu

Cross-flow/tangential filtration

Downstream cross-flow filtration

Liquid separation membranes cross flow filtration

Membrane separation cross-flow filtration

Microfiltration cross-flow filtration

Reverse osmosis cross-flow filtration

Scaling cross-flow filtration

Solid-liquid separation cross-flow filtration

© 2024 chempedia.info