Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fatty autoxidation

Autoxida.tlon. The autoxidation (7) of unsaturated fatty acids in phosphoHpids is similar to that of free acids. Primary products are diene hydroperoxides formed in a free-radical process. [Pg.99]

Figure 1.7 Typical zero-order and corresponding second-derivative electronic absorption spectra of ethanol-reconstituted lipid/chloroform extracts of autoxidized model polyunsaturated fatty-acid compounds and inflammatory synovial fluid obtained after (1) reduction with NaBH4 and (2) dehydration with alcoholic H2S04- (a) Methyl linoleate subsequent to autoxidation in air at ambient temperature for a period of 72 h (—), or exposure to a Fenton reaction system containing EDTA (5.75 x 10 mol/dm ), H2O2 (1.14 X 10 mol/dm ) and Fe(ll) (5.75 x IO mol/dm ) as an aqueous suspension (—) (b) as (a) but with methyl linolenate (c) untreated rheumatoid knee-joint synovial fluid. Figure 1.7 Typical zero-order and corresponding second-derivative electronic absorption spectra of ethanol-reconstituted lipid/chloroform extracts of autoxidized model polyunsaturated fatty-acid compounds and inflammatory synovial fluid obtained after (1) reduction with NaBH4 and (2) dehydration with alcoholic H2S04- (a) Methyl linoleate subsequent to autoxidation in air at ambient temperature for a period of 72 h (—), or exposure to a Fenton reaction system containing EDTA (5.75 x 10 mol/dm ), H2O2 (1.14 X 10 mol/dm ) and Fe(ll) (5.75 x IO mol/dm ) as an aqueous suspension (—) (b) as (a) but with methyl linolenate (c) untreated rheumatoid knee-joint synovial fluid.
Dahle, L.K., Hill, E.G. and HoUman, RT. (1962). The TBA reaction and the autoxidation of polyunsaturated fatty acid methyl esters. Arch. Biochem. 98, 253-259. [Pg.19]

Autoxidation of unsaturated fatty acids is well known. Modifications of the extraction and separation procedures were made to investigate the possibility that these oxygenated fatty acids (OFAs) arise as artefacts. When exposure to light and air were minimized, no changes were noted in TLC and HPLC. [Pg.390]

Are used to accelerate autoxidation and hardening of oxidisable coatings. Metal soaps, used as paint driers, can be made from a variety of carboxylic acids, including the commercially important naphthenic and 2-ethyl hexanoic acids, tall oil, fatty acids, neodecanoic and isononanoic acid. Cobalt is unquestionably the most active drier metal available. Metallic driers such as cobalt naphthenate or octoate and zinc salts can interact with UVAs, HALS, or AOs. [Pg.778]

As a reasonable biogenetie pathway for the enzymatic conversion of the polyunsaturated fatty acid 3 into the bicyclic peroxide 4, the free radical mechanism in Equation 3 was postulated 9). That such a free radical process is a viable mechanism has been indicated by model studies in which prostaglandin-like products were obtained from the autoxidation of methyl linolenate 10> and from the treatment of unsaturated lipid hydroperoxides with free radical initiators U). [Pg.127]

The photobleaching of P-carotene by fluorescent light in fatty acid ester solutions showed an autoxidation kinetic profile with the rate of degradation of P-carotene in the order laurate > oleate > linoleate (Carnevale et al. 1979). The presence of a radical scavenger retarded the autoxidation, thus leading to the view that protection against autoxidation is built into the system by the unsaturation in the fatty acid. [Pg.242]

Yin, H. and Porter, N.A. (2005) Newinsights regarding the autoxidation of polyunsaturated fatty acids. Antioxidants el Redox Signaling, 7, 170—184. [Pg.280]

Peroxyl radicals are the species that propagate autoxidation of the unsaturated fatty acid residues of phospholipids (50). In addition, peroxyl radicals are intermediates in the metabolism of certain drugs such as phenylbutazone (51). Epoxidation of BP-7,8-dihydrodiol has been detected during lipid peroxidation induced in rat liver microsomes by ascorbate or NADPH and during the peroxidatic oxidation of phenylbutazone (52,53). These findings suggest that peroxyl radical-mediated epoxidation of BP-7,8-dihydrodiol is general and may serve as the prototype for similar epoxidations of other olefins in a variety of biochemical systems. In addition, peroxyl radical-dependent epoxidation of BP-7,8-dihydrodiol exhibits the same stereochemistry as the arachidonic acid-stimulated epoxidation by ram seminal vesicle microsomes. This not only provides additional... [Pg.320]

In plant tissues, various enzymes convert the hydroperoxides produced by LOX to other products, some of which are important as flavor compounds. These enzymes include hydroperoxide lyase, which catalyzes the formation of aldehydes and oxo acids hydroperoxide-dependent peroxygenase and epoxygenase, which catalyze the formation of epoxy and hydroxy fatty acids, and hydroperoxide isomerase, which catalyzes the formation of epoxyhydroxy fatty acids and trihydroxy fatty acids. LOX produces flavor volatiles similar to those produced during autoxidation, although the relative proportions of the products may vary widely, depending on the specificity of the enzyme and the reaction conditions. [Pg.122]

Emulsion oxidation of alkylaromatic compounds appeared to be more efficient for the production of hydroperoxides. The first paper devoted to emulsion oxidation of cumene appeared in 1950 [1], The kinetics of emulsion oxidation of cumene was intensely studied by Kucher et al. [2-16], Autoxidation of cumene in the bulk and emulsion occurs with an induction period and autoacceleration. The simple addition of water inhibits the reaction [6], However, the addition of an aqueous solution of Na2C03 or NaOH in combination with vigorous agitation of this system accelerates the oxidation process [1-17]. The addition of an aqueous phase accelerates the oxidation and withdrawal of water retards it [6]. The addition of surfactants such as salts of fatty acids accelerates the oxidation of cumene in emulsion [3], The higher the surfactant concentration the faster the cumene autoxidation in emulsion [17]. The rates of cumene emulsion oxidation after an induction period are given below (T = 353 K, [RH] [H20] = 2 3 (v/v), p02 = 98 kPa [17]). [Pg.436]

The secretion of the red hartebeest is characterized by its high aldehyde content. Of an estimated 100 detectable constituents, 25 are saturated and unsaturated aliphatic aldehydes [138]. Because the aldehydes are highly susceptible to autoxidation, the secretion could therefore only be used for shortterm territorial marking. On the other hand, the conversion of the aldehydes to carboxylic acids could also be transmitting information with a date stamp . In this regard, it is debatable whether fatty acids, which are almost ubiquitous in the animal world, really are such major carriers of semiochemical information in all of the many species in which they are purported to fulfill this role. [Pg.272]

Cosgrove, J. P., Church, D. F., and Pryor, W. A., 1987, The kinetics ofthe autoxidation of polyunsaturated fatty acids, Lipids 22 299-304. [Pg.117]

Oxygen-mediated autoxidation can occur with unsaturated acid components of fats and oils, which are esters of fatty acids with glycerol (see Box 7.16). This leads initially to hydroperoxides that decompose further to produce... [Pg.334]

In Box 9.2 we shall see how vitamin E is used commercially to retard rancidity in fatty materials in food manufacturing it reduces autoxidation by reacting with peroxyl radicals. [Pg.336]

Antioxidants are compounds that inhibit autoxidation reactions by rapidly reacting with radical intermediates to form less-reactive radicals that are unable to continue the chain reaction. The chain reaction is effectively stopped, since the damaging radical becomes bound to the antioxidant. Thus, vitamin E (a-tocopherol) is used commercially to retard rancidity in fatty materials in food manufacturing. Its antioxidant effect is likely to arise by reaction with peroxyl radicals. These remove a hydrogen atom from the phenol group, generating a resonance-stabilized radical that does not propagate the radical reaction. Instead, it mops up further peroxyl radicals. In due course, the tocopheryl peroxide is hydrolysed to a-tocopherylquinone. [Pg.336]

Volatile compounds formed by anabolic or catabolic pathways include fatty acid derivatives, terpenes and phenolics. In contrast, volatile compounds formed during tissue damage are typically formed through enzymatic degradation and/ or autoxidation reactions of primary and/or secondary metabolites and includes lipids, amino acids, glucosinolates, terpenoids and phenolics. [Pg.136]

The volatiles produced by the LOX pathway and autoxidation are typically volatile aldehydes and alcohols responsible for fresh and green sensorial notes. In the LOX pathway these volatile compounds are produced in response to stress, during ripening or after damage of the plant tissue. The pathway is illustrated in Scheme 7.2. Precursors of the LOX (EC 1.13.11.12) catalysed reactions are Cis-polyunsaturated fatty acids with a (Z,Z)-l,4-pentadiene moiety such as linoleic and a-linolenic acids that are typically oxidised into 9-, 10- or 13-hydro-peroxides depending on the specificity of the LOX catalyst. These compounds are then cleaved by hydroperoxide lyase (HPL) into mainly C, C9 and Cio aldehydes, which can then be reduced into the corresponding alcohols by alcohol dehydrogenase (ADH EC 1.1.1.1) (Scheme 7.2) [21, 22]. The production of volatile compounds by the LOX pathway depends, however, on the plants as they have different sets of enzymes, pH in the cells, fatty acid composition of cell walls, etc. [Pg.137]

Many of the compounds derived from enzyme-catalysed oxidative breakdown of unsaturated fatty acids may also be produced by autoxidation [23]. While the enzymatically produced hydroperoxides in most cases yield one hydroperoxide as the dominant product, non-enzymatic oxidation of unsaturated fatty acids yields a mixture of hydroperoxides which differ in the position of the peroxide group and in the geometrical isomerism of the double bonds [24]. As the number of double bonds increases, the number of oxidation and oxygen-addition sites increases proportionally and thus the number of possible volatile... [Pg.137]

Products of the LOX pathway or compounds formed by autoxidation of fatty acids (Scheme 7.2) are also important for leek aroma [31, 163]. Volatile compounds of the LOX pathway are not pronounced in the aroma profile of freshly cut leeks owing to a high content of thiosulfinates and thiopropanal-S-oxide [30]. In processed leeks that have been stored for a long time (frozen storage), however, these aliphatic aldehydes and alcohols have a greater impact on the aroma profile owing to volatilisation and transformations of sulfur compounds [31, 165]. The most important volatiles produced from fatty acids and perceived by GC-O of raw or cooked leeks are pentanal, hexanal, decanal and l-octen-3-ol (Table 7.5) [31, 35, 148, 163, 164]. [Pg.169]

The autoxidation of hydrocarbons catalyzed by cobalt salts of carboxylic acid and bromide ions was kinetically studied. The rate of hydrocarbon oxidation with secondary hydrogen is exactly first order with respect to both hydrocarbon and cobalt concentration. For toluene the rate is second order with respect to cobalt and first order with respect to hydrocarbon concentration, but it is independent of hydrocarbon concentration for a long time during the oxidation. The oxidation rate increases as the carbon number of fatty acid solvent as well as of cobalt anion salt are decreased. It was suggested that the cobalt salt not only initiates the oxidation by decomposing hydroperoxide but also is responsible for the propagation step in the presence of bromide ion. [Pg.195]

T he rate of metal salt-catalyzed autoxidation of hydrocarbons reaches - a maximum at a certain catalyst concentration (1, 7, 13), and any further increases in this concentration do not accelerate the rate. However, when bromide ion is added to the solution of hydrocarbon and fatty acid with metal salts, the oxidation rate increases over the maximum value of k32(RH)2/2k6 as a function of metal concentration. [Pg.195]

The literature dealing with the autoxidation mechanism involved in lipid deterioration has been concerned with investigations on pure unsaturated fatty acids and their esters. The reactions involved, however, are representative of those occurring in lipids and lipid-containing food products. [Pg.237]


See other pages where Fatty autoxidation is mentioned: [Pg.133]    [Pg.541]    [Pg.86]    [Pg.260]    [Pg.260]    [Pg.57]    [Pg.60]    [Pg.136]    [Pg.164]    [Pg.320]    [Pg.497]    [Pg.501]    [Pg.850]    [Pg.297]    [Pg.533]    [Pg.661]    [Pg.691]    [Pg.57]    [Pg.196]    [Pg.137]    [Pg.661]    [Pg.691]    [Pg.851]    [Pg.90]    [Pg.265]    [Pg.237]   
See also in sourсe #XX -- [ Pg.137 ]

See also in sourсe #XX -- [ Pg.169 ]

See also in sourсe #XX -- [ Pg.191 ]




SEARCH



Autoxidation fatty acid hydroperoxides

Autoxidation of saturated fatty

Autoxidation of saturated fatty acids

Autoxidation of unsaturated fatty acids

Fatty acids autoxidation

Fatty autoxidation, secondary product

Fatty saturated, autoxidation

Saturated fatty acids autoxidation

© 2024 chempedia.info