Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyzed autoxidation

Consequently, as a result of increasing environmental pressure many chlorine and nitric acid based processes for the manufacture of substituted aromatic acids are currently being replaced by cleaner, catalytic autoxidation processes. Benzoic acid is traditionally manufactured (ref. 14) via cobalt-catalyzed autoxidation of toluene in the absence of solvent (Fig. 2). The selectivity is ca. 90% at 30% toluene conversion. As noted earlier, oxidation of p-xylene under these conditions gives p-toluic acid in high yield. For further oxidation to terephthalic acid the stronger bromide/cobalt/manganese cocktail is needed. [Pg.280]

The effects of manganese on the cobalt/bromide-catalyzed autoxidation of alkylaromatics are summarized in Figure 17. The use of the Mn/Co/Br system allows for higher reaction temperatures and lower catalyst concentrations than the bromide-free processes. The only disavantage is the corrosive nature of the bromide-containing system which necessitates the use of titanium-lined reactors. [Pg.293]

Camevale, J., E. R. Cole, and G. Crank. 1979. Fluorescent light catalyzed autoxidation of (3-carotene. J. Agric. Food Chem. 27 462 163. [Pg.250]

METAL ION CATALYZED AUTOXIDATION REACTIONS KINETICS AND MECHANISMS... [Pg.395]

The kinetic results reported by Jameson and Blackburn (11,12) for the copper catalyzed autoxidation of ascorbic acid are substantially different from those of Taqui Khan and Martell (6). The former could not reproduce the spontaneous oxidation in the absence of added catalysts when they used extremely pure reagents. These results imply that ascorbic acid is inert toward oxidation by dioxygen and earlier reports on spontaneous oxidation are artifacts due to catalytic impurities. In support of these considerations, it is worthwhile noting that trace amounts of transition metal ions, in particular Cu(II), may cause irreproducibilities in experimental work with ascorbic acid (13). While this problem can be eliminated by masking the metal ion(s), the masking agent needs to be selected carefully since it could become involved in side reactions in a given system. [Pg.403]

Iron(III)-catalyzed autoxidation of ascorbic acid has received considerably less attention than the comparable reactions with copper species. Anaerobic studies confirmed that Fe(III) can easily oxidize ascorbic acid to dehydroascorbic acid. Xu and Jordan reported two-stage kinetics for this system in the presence of an excess of the metal ion, and suggested the fast formation of iron(III) ascorbate complexes which undergo reversible electron transfer steps (21). However, Bansch and coworkers did not find spectral evidence for the formation of ascorbate complexes in excess ascorbic acid (22). On the basis of a combined pH, temperature and pressure dependence study these authors confirmed that the oxidation by Fe(H20)g+ proceeds via an outer-sphere mechanism, while the reaction with Fe(H20)50H2+ is substitution-controlled and follows an inner-sphere electron transfer path. To some extent, these results may contradict with the model proposed by Taqui Khan and Martell (6), because the oxidation by the metal ion may take place before the ternary oxygen complex is actually formed in Eq. (17). [Pg.408]

In non-aqueous solution, the copper catalyzed autoxidation of catechol was interpreted in terms of a Cu(I)/Cu(II) redox cycle (34). It was assumed that the formation of a dinuclear copper(II)-catecholate intermediate is followed by an intramolecular two-electron step. The product Cu(I) is quickly reoxidized by dioxygen to Cu(II). A somewhat different model postulated the reversible formation of a substrate-catalyst-dioxy-gen ternary complex for the Mn(II) and Co(II) catalyzed autoxidations in protic media (35). [Pg.411]

Detailed kinetic studies confirmed a two-stage reaction for the cobaloxime(II)-catalyzed autoxidation of this system in methanol (54,55). First, within about 30 s, the reaction reached steady-state conditions via reversible oxygenation of Co(II) to the corresponding... [Pg.419]

Fig. 3. Decay of the H202 concentration versus time during the anaerobic oxidation reaction with cysteine in the presence of CuS04. First stage of constant rate (first-order in [Cu]) during the period of oxidation, second stage of increasing rate after completion of the oxidation of cysteine to cystine. Reprinted from Journal of Molecular catalysis, vol. 11, Zwart, J. van Wolput, J. H. M. C. van der Cammen, J. C. J. M. Koningsberger, D. C. Accumulation and Reactions of H202 During the Copper Ion Catalyzed Autoxidation of Cysteine in Alkaline Medium, p. 69, Copyright (2002), with permission from Elsevier Science. Fig. 3. Decay of the H202 concentration versus time during the anaerobic oxidation reaction with cysteine in the presence of CuS04. First stage of constant rate (first-order in [Cu]) during the period of oxidation, second stage of increasing rate after completion of the oxidation of cysteine to cystine. Reprinted from Journal of Molecular catalysis, vol. 11, Zwart, J. van Wolput, J. H. M. C. van der Cammen, J. C. J. M. Koningsberger, D. C. Accumulation and Reactions of H202 During the Copper Ion Catalyzed Autoxidation of Cysteine in Alkaline Medium, p. 69, Copyright (2002), with permission from Elsevier Science.
The effect of non-participating ligands on the copper catalyzed autoxidation of cysteine was studied in the presence of glycylglycine-phosphate and catecholamines, (2-R-)H2C, (epinephrine, R = CH(OH)-CH2-NHCH3 norepinephrine, R = CH(OH)-CH2-NH2 dopamine, R = CH2-CH2-NH2 dopa, R = CH2-CH(COOH)-NH2) by Hanaki and co-workers (68,69). Typically, these reactions followed Michaelis-Menten kinetics and the autoxidation rate displayed a bell-shaped curve as a function of pH. The catecholamines had no kinetic effects under anaerobic conditions, but catalyzed the autoxidation of cysteine in the following order of efficiency epinephrine = norepinephrine > dopamine > dopa. The concentration and pH dependencies of the reaction rate were interpreted by assuming that the redox active species is the [L Cun(RS-)] ternary complex which is formed in a very fast reaction between CunL and cysteine. Thus, the autoxidation occurs at maximum rate when the conditions are optimal for the formation of this species. At relatively low pH, the ternary complex does not form in sufficient concentration. [Pg.429]

Metal ion catalyzed autoxidation reactions of glutathione were found to be very similar to that of cysteine (76,77). In a systematic study, catalytic activity was found with Cu(II), Fe(II) and to a much lesser extent with Cu(I) and Ni(I). The reaction produces hydrogen peroxide, the amount of which strongly depends on the presence of various chelating molecules. It was noted that the catalysis requires some sort of complex formation between the catalyst and substrate. The formation of a radical intermediate was not ruled out, but a radical initiated chain mechanism was not necessary for the interpretation of the results (76). [Pg.431]

A review by Brandt and van Eldik provides insight into the basic kinetic features and mechanistic details of transition metal-catalyzed autoxidation reactions of sulfur(IV) species on the basis of literature data reported up to the early 1990s (78). Earlier results confirmed that these reactions may occur via non-radical, radical and combinations of non-radical and radical mechanisms. More recent studies have shown evidence mainly for the radical mechanisms, although a non-radical, two-electron decomposition was reported for the HgSC>3 complex recently (79). The possiblity of various redox paths combined with protolytic and complex-formation reactions are the sources of manifest complexity in the kinetic characteristics of these systems. Nevertheless, the predominant sulfur containing product is always the sulfate ion. In spite of extensive studies on this topic for well over a century, important aspects of the mechanisms remain to be clarified and the interpretation of some of the reactions is still controversial. Recent studies were... [Pg.431]

Fig. 4. Absorbance-time traces for the iron(III) catalyzed autoxidation of sulfur(IV) oxides (a) [02] =0m (b) [02] = 7.5xlO 4M. Experimental conditions [Fe(III)] = 5.0 x 1(T6 M [S(IV)] = 5.0 x 1(T3 M ionic strength = 0.5 M T= 25 °C pH = 2.5 A = 390 nm absorbance scale is in V (10 V = 1 absorbance unit). Reprinted with permission from Brandt, C. Fabian, I. van Eldik, R. Inorg. Chem. 1994, 33, 687. Copyright (2002) American Chemical Society. Fig. 4. Absorbance-time traces for the iron(III) catalyzed autoxidation of sulfur(IV) oxides (a) [02] =0m (b) [02] = 7.5xlO 4M. Experimental conditions [Fe(III)] = 5.0 x 1(T6 M [S(IV)] = 5.0 x 1(T3 M ionic strength = 0.5 M T= 25 °C pH = 2.5 A = 390 nm absorbance scale is in V (10 V = 1 absorbance unit). Reprinted with permission from Brandt, C. Fabian, I. van Eldik, R. Inorg. Chem. 1994, 33, 687. Copyright (2002) American Chemical Society.
Recent studies demonstrated that the composition of the reaction mixture, and in particular the pH have significant effects on the kinetics of iron(III)-catalyzed autoxidation of sulfur(IV) oxides. When the reaction was triggered at pH 6.1, the typical pH profile as a function of time exhibited a distinct induction period after which the pH sharply decreased (98).The S-shaped kinetic traces were interpreted by assuming that the buffer capacity of the HSO3 / SO3- system efficiently reduces the acidifying effect of the oxidation process. The activity of the... [Pg.437]

Berglund and co-workers (113) observed an induction period in the manganese(II) catalyzed autoxidation of sulfur(IV) followed by strictly first-order decay of HSO3 at pH = 2.4 and at a considerably lower concentration of sulfur(IV) than used by Connick and Zhang. In the presence of added Mn(III) the induction period was eliminated and the reaction became faster. The validity of the following experimental rate expression was confirmed ... [Pg.439]


See other pages where Catalyzed autoxidation is mentioned: [Pg.271]    [Pg.285]    [Pg.293]    [Pg.957]    [Pg.653]    [Pg.396]    [Pg.397]    [Pg.399]    [Pg.401]    [Pg.403]    [Pg.405]    [Pg.407]    [Pg.409]    [Pg.411]    [Pg.412]    [Pg.413]    [Pg.413]    [Pg.415]    [Pg.417]    [Pg.419]    [Pg.419]    [Pg.421]    [Pg.423]    [Pg.425]    [Pg.427]    [Pg.429]    [Pg.431]    [Pg.433]    [Pg.435]    [Pg.437]    [Pg.438]    [Pg.438]    [Pg.439]    [Pg.441]    [Pg.443]    [Pg.445]   
See also in sourсe #XX -- [ Pg.248 ]




SEARCH



Autoxidation base-catalyzed

Autoxidation catalyzed, kinetics

Autoxidation metal chelate catalyzed

Base-catalyzed autoxidations

Cobalt -catalyzed autoxidation

Cobalt ions, autoxidation catalyzed

Copper catalyzed autoxidation

Iron catalyzed autoxidation

Metal ion catalyzed autoxidation reaction

Metal-Catalyzed Liquid-Phase Autoxidation

Metal-catalyzed autoxidation

Metal-catalyzed autoxidation, hydrogen

Sulfur metal-catalyzed autoxidation

© 2024 chempedia.info