Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsions controlling properties

It is well known that the particle shape, size, and distribution of a latex or emulsion control the properties and end-use applications. Many types of latex are manufactured with a controlled and sometimes monodisperse distribution of particle sizes. These polymer liquids are wet and sticky, making specimen preparation for microscopy very difficult. Because particle size and shape are so important to properties, the preparation must focus on not changing the particles as found in the fluid state. Preparation includes simple methods (see Section 4.1) such as dropping a solution onto a specimen holder, staining/fixation (see Section 4.4), microtomy (see Section 4.3), and special cryo methods (see Section 4.9). All microscopy techniques can be used for these studies. This section is meant to provide a brief survey of the types of microscopy applications that have been found useful in the evaluation of emulsions, latexes, and their use as coatings and adhesives. [Pg.381]

Features Reliable foam control in aq. media no silicone spotting small particle size exc. emulsion stability Properties Liq. 10% act. [Pg.1123]

The detection sensitivity of radiography is related among others to the properties and quality of industrial x-ray film systems. Changes of the products, variations due to different emulsions and combinations of products of different manufacturers can influence the decisive properties of film systems as classified in EN 584-1.To ensure the quality of industrial x-ray film systems a system for quality assurance open to all interested parties is proposed which is based on periodical round robin tests and quality controls of the manufacturer or an independent third party institution. [Pg.555]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Table 13 shows some of the developmental products that have EPA appHcations pending and may be available in the near future. Sea Nine is a variation on the very successflil isothiazolone chemistry. It is claimed to be an improvement over metallic actives used for antifouling paint and wood preservation (46,47). Decylthioethylamine and its water-soluble hydrochloride are claimed to be especially effective at controlling biofilm in cooling water appHcations (48—50). The hydroxymethylpyra2ole shown is also suggested to have properties that are well suited to the protection of aqueous products or emulsions (51,52). [Pg.101]

Butter. In the United States about 10 wt % of edible fats used are butter. Butter is defined as a product that contains 80% milk fat with not more than 16% moisture. It is made of cream with 25—40% milk fat. The process is primarily a mechanical one in which the cream, an emulsion of fat-in-semm, is changed to butter, an emulsion of semm-in-fat. The process is accompHshed by churning or by a continuous operation with automatic controls. Some physical properties are given in Table 16 (see Emulsions). [Pg.367]

For the most part, additives control the appHcation or theological properties of a paint. These additives include materials for latex paints such as hydroxyethylceUulose, hydrophobicaHy modified alkah-soluble emulsions, and hydrophobicaHy modified ethylene oxide urethanes. Solvent-based alkyd paints typically use castor oil derivatives and attapulgite and bentonite clays. The volume soHds of a paint is an equally important physical property affecting the apphcation and theological properties. Without adequate volume soHds, the desired appHcation and theological properties may be impossible to achieve, no matter how much or many additives are incorporated into the paint. [Pg.543]

By 1980, research and development shifted from relatively inexpensive surfactants such as petroleum sulfonates to more cosdy but more effective surfactants tailored to reservoir and cmde oil properties. Critical surfactant issues are performance in saline injection waters, adsorption on reservoir rock, partitioning into reservoir cmde oil, chemical stabiUty in the reservoir, interactions with the mobiUty control polymer, and production problems caused by resultant emulsions. Reservoir heterogeneity can also greatly reduce process effectiveness. The decline in oil prices in the early 1980s halted much of the work because of the relatively high cost of micellar processes. [Pg.194]

Quahty control testing of siUcones utilizes a combination of physical and chemical measurements to ensure satisfactory product performance and processibihty. Eor example, in addition to the usual physical properties of cured elastomers, the plasticity of heat-cured mbber and the extmsion rate of TVR elastomers under standard conditions are important to the customer. Where the siUcone appHcation involves surface activity, a use test is frequently the only rehable indicator of performance. Eor example, the performance of an antifoaming agent can be tested by measuring the foam reduction when the sihcone emulsion is added to an agitated standard detergent solution. The product data sheets and technical bulletins from commercial siUcone producers can be consulted for more information. [Pg.60]

Citric acid is utilized in a large variety of food and industrial appHcations because of its unique combination of properties. It is used as an acid to adjust pH, a buffer to control or maintain pH, a chelator to form stable complexes with multivalent metal ions, and a dispersing agent to stabilize emulsions and other multiphase systems (see Dispersants). In addition, it has a pleasant, clean, tart taste making it useful in food and beverage products. [Pg.185]

The choice of coagulant for breaking of the emulsion at the start of the finishing process is dependent on many factors. Salts such as calcium chloride, aluminum sulfate, and sodium chloride are often used. Frequentiy, pH and temperature must be controlled to ensure efficient coagulation. The objectives are to leave no uncoagulated latex, to produce a cmmb that can easily be dewatered, to avoid fines that could be lost, and to control the residual materials left in the product so that damage to properties is kept at a minimum. For example, if a significant amount of a hydrophilic emulsifier residue is left in the polymer, water resistance of final product suffers, and if the residue left is acidic in nature, it usually contributes to slow cure rate. [Pg.521]

Polybutadiene was first prepared in the early years of the 20th century by such methods as sodium-catalysed polymerisation of butadiene. However, the polymers produced by these methods and also by the later free-radical emulsion polymerisation techniques did not possess the properties which made them desirable rubbers. With the development of the Ziegler-Natta catalyst systems in the 1950s, it was possible to produce polymers with a controlled stereo regularity, some of which had useful properties as elastomers. [Pg.290]

Proper control of the properties of drilling mud is very important for their preparation and maintenance. Although oil-base muds are substantially different from water-base muds, several basic tests (such as specific weight, API funnel viscosity, API filtration, and retort analysis) are run in the same way. The test interpretations, however, are somewhat different. In addition, oil-base muds have several unique properties, such as temperature sensitivity, emulsion stability, aniline point, and oil coating-water wettability that require other tests. Therefore, testing of water and oil-base muds will be considered separately. [Pg.652]

The determination and analysis of sensory properties plays an important role in the development of new consumer products. Particularly in the food industry sensory analysis has become an indispensable tool in research, development, marketing and quality control. The discipline of sensory analysis covers a wide spectrum of subjects physiology of sensory perception, psychology of human behaviour, flavour chemistry, physics of emulsion break-up and flavour release, testing methodology, consumer research, statistical data analysis. Not all of these aspects are of direct interest for the chemometrician. In this chapter we will cover a few topics in the analysis of sensory data. General introductory books are e.g. Refs. [1-3]. [Pg.421]


See other pages where Emulsions controlling properties is mentioned: [Pg.433]    [Pg.202]    [Pg.66]    [Pg.112]    [Pg.463]    [Pg.823]    [Pg.21]    [Pg.882]    [Pg.199]    [Pg.495]    [Pg.864]    [Pg.1299]    [Pg.1299]    [Pg.119]    [Pg.208]    [Pg.354]    [Pg.512]    [Pg.175]    [Pg.451]    [Pg.209]    [Pg.231]    [Pg.185]    [Pg.238]    [Pg.439]    [Pg.464]    [Pg.317]    [Pg.586]    [Pg.360]    [Pg.134]    [Pg.237]    [Pg.931]    [Pg.144]    [Pg.283]    [Pg.332]    [Pg.41]    [Pg.314]    [Pg.620]   
See also in sourсe #XX -- [ Pg.515 , Pg.516 , Pg.517 , Pg.518 , Pg.519 ]




SEARCH



Control properties

Controlled properties

Emulsion properties

© 2024 chempedia.info