Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detergent solutions

Quahty control testing of siUcones utilizes a combination of physical and chemical measurements to ensure satisfactory product performance and processibihty. Eor example, in addition to the usual physical properties of cured elastomers, the plasticity of heat-cured mbber and the extmsion rate of TVR elastomers under standard conditions are important to the customer. Where the siUcone appHcation involves surface activity, a use test is frequently the only rehable indicator of performance. Eor example, the performance of an antifoaming agent can be tested by measuring the foam reduction when the sihcone emulsion is added to an agitated standard detergent solution. The product data sheets and technical bulletins from commercial siUcone producers can be consulted for more information. [Pg.60]

These phenomena are most rapid and easiest to observe in fairly concentrated aqueous detergent solutions, that is, minimally 2—5% detergent solutions. In a practical quaHtative way, this is a familiar effect, and there are many examples of the extraordinary solvency and cleaning power of concentrated detergent solutions, for example, in the case of fabric pretreatment with neat heavy-duty Hquid detergents. Penetration can also be demonstrated at low detergent concentrations. As observed microscopically, the penetration occurs in a characteristic manner with the formation of a sheathlike stmcture, termed myelin they are filled with isotropic Hquid but have a Hquid crystalline birefringent skin. [Pg.535]

Aqueous-detergent solutions of appropriate concentration and temperature can phase separate to form two phases, one rich in detergents, possibly in the form of micelles, and the other depleted of the detergent (Piyde and Phillips, op. cit.). Proteins distribute between the two phases, hydrophobic (e.g., membrane) proteins reporting to the detergent-rich phase and hydrophilic proteins to the detergent-free phase. Indications are that the size-exclusion properties of these systems can also be exploited for viral separations. These systems would be handled in the same way as the aqueous two-phase systems. [Pg.2061]

Inspect the reservoir interior for rust and other deposits. Remove any rust with scrapers and wire brushes, wash down the interior with a detergent solution, and flush with clean water. Dry the interior by blowing the surfaces with dry air and use a vacuum cleaner to remove trapped liquids. [Pg.553]

When the system is eonsidered elean, empty the oil reservoir, and elean out all debris by washing with a detergent solution followed by a freshwater rinse. Dry the interior by blowing with dry air, and vaeuum any freestanding water. Replaee the filter elements. Remove jumpers and replaee orifiees. Return eontrols to their normal settings. Refill the oil reservoir with the same oil used in the flush if lab tests indieate it is satisfaetory otherwise, refill with new oil. [Pg.554]

In general, grafting of hydrophillic monomers have been found to lead to an increase in wettability, adhesion, dyeing, and rate of release of oil stains by detergent solution. On the other hand, if the monomer is hydro-phobic, the result will be decreased wetting by all liquids including oil stains. If grafting is not restricted to surface alone but encompasses the bulk of the backbone polymer, then the properties such as flame resistance, water sorption, crease resistance, etc. will be affected. [Pg.497]

The key properties here are hardness and wear resistance, ability to. stand minor knocks and dents without cracking and resistance to various domestic chemicals. These vary with type of appliance, e.g. detergent solutions are important for washing machines, while a fridge will be required to withstand fruit juices, ketchup and polishes. Good colour and appearance in white and mainly pastel shades will be expected. Corrosion resistance is required, especially for washing machines, and domestic appliances frequently have to withstand humid conditions in kitchens. [Pg.631]

Waste nylon-6,6 was washed in a diluted commercial detergent solution at 100°C for 0.5 h and then rinsed twice with water to remove any finishes present. The washed nylon-6,6 was then reacted with molten adipic acid for 1.5 h or more at a temperature of 175°C with a weight ratio of nylon-to-adipic acid of 0.15 1. The molten product was then exposed to steam at a temperature of 230-233°C to remove any stabilizers present. The acidolysis product was then hydrolyzed with water at a temperature of 204°C under autogenous pressure for 0.5 h or longer with a ratio of water to acidolysis product of 0.50 1 (w/w). The hot solution was then filtered at 100°C to remove any titanium dioxide present. The filtered product was then mixed with HMDA to neutralize any excess acid present. The solution was then filtered to remove any solids. A 50% by weight aqueous solution of HMDA was added to the filtrate, and under standard polymerization conditions, polyhexamethylene adipamide (nylon-6,6) was produced. [Pg.566]

Several cleaning methods are used to remove the densified gel layer of retained material from the membrane surface. Alkaline solutions followed by hot detergent solutions are indicated for organic polymer colloids and gelatinous materials fouling. Ferrous deposits, t3 pical in water treatments, are usually removed with a citric or hydrochloric wash. [35]. [Pg.116]

The most straight-forward interpretation of the phosphorylation reaction would be that exactly the same reaction is catalyzed as during transport of the sugar into the cell where the substrate is offered to the periplasmic side of the membrane (Eq. (1), overall reaction) phosphorylation would measure transport as well. However, this may not be the case several lines of evidence discussed in the previous sections indicate that the mechanism underlying the phosphorylation reaction could be much more complex. Factors that may complicate the interpretation of the phosphorylation reaction in detergent solutions are ... [Pg.160]

Aqueous-detergent solutions of appropriate concentration and temperature can phase-separate to form two phases, one rich in detergents, possibly in the form of micelles, and the other depleted of the detergent [Pryde and Phillips, Biochem. J., 233, 525-533 (1986)]. [Pg.77]

The stereoselectivity of some Diels-Alder reactions was also strongly affected in water.26 At low concentrations, in which both components were completely dissolved, the reaction of cyclopentadiene with butenone gave a 21.4 1 ratio of endo/exo products when they were stirred at 0.15 M concentration in water, compared to only a 3.85 1 ratio in excess cyclopentadiene and an 8.5 1 ratio with ethanol as the solvent. Aqueous detergent solution had no effect on the product ratio. The stereochemical changes were explained by the need to minimize the transition-state surface area in water solution, thus favoring the more compact endo stereochemistry. The results are also consistent with the effect of polar media on the ratio.27... [Pg.377]

E. coli for example, it is used for the production of enzymes as additives in detergent solutions. Proteins are secreted into cultivation media and are usually biologically active. [Pg.42]

Wash particles (e.g., 100 mg of 1 pm carboxylated latex beads) into coupling buffer (i.e., 50 mM MES, pH 6.0 or 50 mM sodium phosphate, pH 7.2 buffers with pH values from pH 4.5 -7.5 may be used with success however, as the pH increases the reaction rate will decrease). Suspend the particles in 5 ml coupling buffer. The addition of a dilute detergent solution may be done to increase particle stability (e.g., final concentration of 0.01 percent sodium dodecyl sulfate (SDS)). Avoid the addition of any components containing carboxylates or amines (such as acetate, glycine, Tris, imidazole, etc.). Also, avoid the presence of thiols (e.g., dithiothreitol (DTT), 2-mercaptoethanol, etc.), as these will react with EDC and effectively inactivate it. [Pg.598]


See other pages where Detergent solutions is mentioned: [Pg.480]    [Pg.532]    [Pg.312]    [Pg.426]    [Pg.242]    [Pg.253]    [Pg.451]    [Pg.535]    [Pg.537]    [Pg.71]    [Pg.371]    [Pg.293]    [Pg.3]    [Pg.829]    [Pg.272]    [Pg.419]    [Pg.680]    [Pg.881]    [Pg.346]    [Pg.641]    [Pg.194]    [Pg.283]    [Pg.272]    [Pg.419]    [Pg.1]    [Pg.329]    [Pg.1005]    [Pg.1005]    [Pg.177]    [Pg.165]    [Pg.230]    [Pg.140]    [Pg.201]    [Pg.290]    [Pg.581]   
See also in sourсe #XX -- [ Pg.1005 ]

See also in sourсe #XX -- [ Pg.454 ]




SEARCH



© 2024 chempedia.info