Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic characterization techniques

It was electronic spectroscopy that provided the pioneers of quantum mechanics with incontrovertible evidence of the quantum nature of energy at the atomic level. The series of lines in the spectra of atoms reveal the electronic structures of atoms, whieh ean only be described in quanmm terms. In the same way, the electronic spectra of molecules give information about their electronic structures, and have helped to establish our present understanding of chemical bonding in molecules, now often backed by computational studies (Section 3.8.4). Further information is available in [1]. [Pg.277]

The purpose of this chapter is to provide an overview of a rather wide array of experimental techniques that can tell us about the electronic structure of molecules. Some of these techniques, such as photoelectron (PE) spectroscopy, which is based on Einstein s photoelectric effect, are generally applied to gas-phase molecules. They can give high-resolution spectra, providing information about molecular vibrations and even, in a few cases, rotations. At the other end of the scale, UV/vis spectroscopy, particularly as applied to transition-metal complexes in solution, involves broad bands, and although it is an important and widely-used method, the information it gives is limited. Emission spectroscopy of transition-metal compounds has also become important. [Pg.277]

Electronic spectra rarely give direct information about molecular structures. Because a typical molecule has many electrons in different energy levels, together with a large number of unoccupied levels, and excitation can occur from each of the occupied levels to many or all of the unoccupied levels, the spectra are in principle complicated, so that assignment can sometimes be difficult or impossible. But symmetry, degeneracy of energy levels and selection rules aU simplify matters, and if we understand all of these, then we will usually be able to extract very useful information. [Pg.277]

Structural Methods in Molecular Inorganic Chemistry, First Edition. David W. H. Rankin, Norbert W. Mitzel and Carole A. Morrison. 2013 John Wiley Sons, Ltd. Published 2013 by John Wiley Sons, Ltd. [Pg.277]


Materials characterization techniques, ie, atomic and molecular identification and analysis, ate discussed ia articles the tides of which, for the most part, are descriptive of the analytical method. For example, both iaftared (it) and near iaftared analysis (nira) are described ia Infrared and raman SPECTROSCOPY. Nucleai magaetic resoaance (nmr) and electron spia resonance (esr) are discussed ia Magnetic spin resonance. Ultraviolet (uv) and visible (vis), absorption and emission, as well as Raman spectroscopy, circular dichroism (cd), etc are discussed ia Spectroscopy (see also Chemiluminescence Electho-analytical techniques It unoassay Mass specthot thy Microscopy Microwave technology Plasma technology and X-ray technology). [Pg.393]

Similar to PbSe, the controlled growth of lead telluride, PbTe, on (111) InP was demonstrated from aqueous, acidic solutions of Pb(II) and Cd(II) nitrate salts and tellurite, at room temperature [13]. The poor epitaxy observed, due to the presence of polycrystalline material, was attributed to the existence of a large lattice mismatch between PbTe and InP (9%) compared to the PbSe/InP system (4.4%). The characterization techniques revealed the absence of planar defects in the PbTe structure, like stacking faults or microtwins, in contrast to II-VI chalcogenides like CdSe. This was related to electronic and structural anomalies. [Pg.158]

The STEM Is Ideally suited for the characterization of these materials, because one Is normally measuring high atomic number elements In low atomic number metal oxide matrices, thus facilitating favorable contrast effects for observation of dispersed metal crystallites due to diffraction and elastic scattering of electrons as a function of Z number. The ability to observe and measure areas 2 nm In size In real time makes analysis of many metal particles relatively rapid and convenient. As with all techniques, limitations are encountered. Information such as metal surface areas, oxidation states of elements, chemical reactivity, etc., are often desired. Consequently, additional Input from other characterization techniques should be sought to complement the STEM data. [Pg.375]

It is noteworthy that the HRTEM cannot distinguish core and shell even by combining X-ray or electron diffraction techniques for some small nanoparticles. If the shell epitaxially grows on the core in the case of two kinds of metals with same crystal type and little difference of lattice constant, the precise structure of the bimetallic nanoparticles cannot be well characterized by the present technique. Hodak et al. [153] investigated Au-core/Ag-shell or Ag-core/Au-shell bimetallic nanoparticles. They confirmed that Au shell forms on Ag core by the epitaxial growth. In the TEM observations, the core/shell structures of Ag/Au nanoparticles are not clear even in the HRTEM images in this case (Figure 7). [Pg.59]

XPS has typically been regarded primarily as a surface characterization technique. Indeed, angle-resolved XPS studies can be very informative in revealing the surface structure of solids, as demonstrated for the oxidation of Hf(Sio.sAso.5)As. However, with proper sample preparation, the electronic structure of the bulk solid can be obtained. A useful adjunct to XPS is X-ray absorption spectroscopy, which probes the bulk of the solid. If trends in the XPS BEs parallel those in absorption energies, then we can be reasonably confident that they represent the intrinsic properties of the solid. Features in XANES spectra such as pre-edge and absorption edge intensities can also provide qualitative information about the occupation of electronic states. [Pg.139]

As the analytical, synthetic, and physical characterization techniques of the chemical sciences have advanced, the scale of material control moves to smaller sizes. Nanoscience is the examination of objects—particles, liquid droplets, crystals, fibers—with sizes that are larger than molecules but smaller than structures commonly prepared by photolithographic microfabrication. The definition of nanomaterials is neither sharp nor easy, nor need it be. Single molecules can be considered components of nanosystems (and are considered as such in fields such as molecular electronics and molecular motors). So can objects that have dimensions of >100 nm, even though such objects can be fabricated—albeit with substantial technical difficulty—by photolithography. We will define (somewhat arbitrarily) nanoscience as the study of the preparation, characterization, and use of substances having dimensions in the range of 1 to 100 nm. Many types of chemical systems, such as self-assembled monolayers (with only one dimension small) or carbon nanotubes (buckytubes) (with two dimensions small), are considered nanosystems. [Pg.136]

Multilayer assemblies of -0.5 pm thickness were built up on quartz plates and the films were characterized in detail using spectroscopic (vis. IR) and electron microscopic techniques. [Pg.218]

Figure 9.3. Characterization of mesoporous Ti02 films templated by Pluronics block copolymers using diverse characterization techniques XRD pattern (a), transmission electron microscope (TEM) image (b), dark-field TEM image (c), and isotherms of Kr adsorption (d).The Pluronic-templated Ti02 films were calcined at 400°C (solid points) and 600°C (open points). The films were prepared according to Alberius et al. (Ref. 14). Figure 9.3. Characterization of mesoporous Ti02 films templated by Pluronics block copolymers using diverse characterization techniques XRD pattern (a), transmission electron microscope (TEM) image (b), dark-field TEM image (c), and isotherms of Kr adsorption (d).The Pluronic-templated Ti02 films were calcined at 400°C (solid points) and 600°C (open points). The films were prepared according to Alberius et al. (Ref. 14).
Characterization techniques become surface sensitive if the particles or radiation to be detected come from the outer layers of the sample. Low energy electrons, ions and neutrals can only travel over distances between one and ten interatomic spacings in the solid state, implying that such particles coming off a catalyst reveal surface-specific information. The inherent disadvantage of the small mean free path is that measurements need to be carried out in vacuum, which conflicts with the wish to investigate catalysts under reaction conditions. [Pg.20]

In the last century, many microstructural characterization techniques have been developed, such as electron microscopy, atomic tunneling microscopy, photoelectron spectroscopy, Raman spectroscopy, etc. The structure of the OLED-based displays is such that many pixels are arranged orderly in the x-y plane. The size and number of pixels determine the resolution and size of the display. Along the z-axis, several layers are stacked on each other. These layers... [Pg.617]

Transmission electron microscopy (TEM) is a powerful and mature microstructural characterization technique. The principles and applications of TEM have been described in many books [16 20]. The image formation in TEM is similar to that in optical microscopy, but the resolution of TEM is far superior to that of an optical microscope due to the enormous differences in the wavelengths of the sources used in these two microscopes. Today, most TEMs can be routinely operated at a resolution better than 0.2 nm, which provides the desired microstructural information about ultrathin layers and their interfaces in OLEDs. Electron beams can be focused to nanometer size, so nanochemical analysis of materials can be performed [21]. These unique abilities to provide structural and chemical information down to atomic-nanometer dimensions make it an indispensable technique in OLED development. However, TEM specimens need to be very thin to make them transparent to electrons. This is one of the most formidable obstacles in using TEM in this field. Current versions of OLEDs are composed of hard glass substrates, soft organic materials, and metal layers. Conventional TEM sample preparation techniques are no longer suitable for these samples [22-24], Recently, these difficulties have been overcome by using the advanced dual beam (DB) microscopy technique, which will be discussed later. [Pg.618]

In this chapter, we introduce some of the most common spectroscopies and methods available for the characterization of heterogeneous catalysts [3-13], These techniques can be broadly grouped according to the nature of the probes employed for excitation, including photons, electrons, ions, and neutrons, or, alternatively, according to the type of information they provide. Here we have chosen to group the main catalyst characterization techniques by using a combination of both criteria into structural, thermal, optical, and surface-sensitive techniques. We also focus on the characterization of real catalysts, and toward the end make brief reference to studies with model systems. Only the basics of each technique and a few examples of applications to catalyst characterization are provided, but more specialized references are included for those interested in a more in-depth discussion. [Pg.3]

This chapter provides a concise summary of the most important concepts and characteristics of CNTs including structural aspects (i.e. chirality, defects, doping), properties (i.e. mechanical, electronic, thermal), synthesis and characterization techniques and post-processing strategies (i.e. purification, separation, functionalization), and is thus intended as an introduction for newcomers. [Pg.5]

This section provides brief insights on some of the most important characterization techniques used for CNTs and other nanocarbons in addition to microscopy-related (i.e. SEM, TEM, AFM, STM) and diffraction (i.e. X-ray, electron) techniques. [Pg.12]

Suitable characterization techniques for surface functional groups are temperature-programmed desorption (TPD), acid/base titration [29], infrared spectroscopy, or X-ray photoemission spectroscopy, whereas structural properties are typically monitored by nitrogen physisorption, electron microscopy, or Raman spectroscopy. The application of these methods in the field of nanocarbon research is reviewed elsewhere [5,32]. [Pg.400]


See other pages where Electronic characterization techniques is mentioned: [Pg.277]    [Pg.278]    [Pg.280]    [Pg.282]    [Pg.284]    [Pg.286]    [Pg.288]    [Pg.290]    [Pg.292]    [Pg.294]    [Pg.296]    [Pg.298]    [Pg.300]    [Pg.302]    [Pg.277]    [Pg.278]    [Pg.280]    [Pg.282]    [Pg.284]    [Pg.286]    [Pg.288]    [Pg.290]    [Pg.292]    [Pg.294]    [Pg.296]    [Pg.298]    [Pg.300]    [Pg.302]    [Pg.270]    [Pg.99]    [Pg.732]    [Pg.66]    [Pg.45]    [Pg.172]    [Pg.554]    [Pg.127]    [Pg.158]    [Pg.32]    [Pg.349]    [Pg.105]    [Pg.160]    [Pg.289]    [Pg.87]    [Pg.220]    [Pg.121]    [Pg.621]    [Pg.88]   


SEARCH



Characterization techniques

Electron characterization

Electron techniques

Electronic Characterization

© 2024 chempedia.info