Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrodes amalgamation

If al>a2y then short circuiting of this cell results in potassium dissolution at the left-hand electrode and incorporation into the amalgam at the right-hand electrode. Amalgam electrodes can be used as reversible electrodes, even for metals as reactive as the alkali metals, especially in some non-aqueous solvents. [Pg.183]

The boundary value problem (bvp) by considering that the reduced species is initially present in the solution (solution soluble product) or in the electrode (amalgam formation), and that diffusion coefficients of both species are different, is... [Pg.103]

Whereas the standard reduction potential for half-reaction 7.51 is readily measurable in aqueous solution (see Section 7.2), that for half-reaction 7.50 must be determined by a rather elaborate set of experiments involving Na amalgam electrodes (amalgams, see Box 22.3). [Pg.208]

Anodic-stripping voltaimnetry (ASV) is used for the analysis of cations in solution, particularly to detemiine trace heavy metals. It involves pre-concentrating the metals at the electrode surface by reducmg the dissolved metal species in the sample to the zero oxidation state, where they tend to fomi amalgams with Hg. Subsequently, the potential is swept anodically resulting in the dissolution of tire metal species back into solution at their respective fomial potential values. The detemiination step often utilizes a square-wave scan (SWASV), since it increases the rapidity of tlie analysis, avoiding interference from oxygen in solution, and improves the sensitivity. This teclmique has been shown to enable the simultaneous detemiination of four to six trace metals at concentrations down to fractional parts per billion and has found widespread use in seawater analysis. [Pg.1932]

The electrode potential of aluminium would lead us to expect attack by water. The inertness to water is due to the formation of an unreactive layer of oxide on the metal surface. In the presence of mercury, aluminium readily forms an amalgam (destroying the original surface) which is. therefore, rapidly attacked by water. Since mercury can be readily displaced from its soluble salts by aluminium, contact with such salts must be avoided if rapid corrosion and weakening of aluminium structures is to be prevented. [Pg.144]

Despite its electrode potential (p. 98), very pure zinc has little or no reaction with dilute acids. If impurities are present, local electrochemical cells are set up (cf the rusting of iron. p. 398) and the zinc reacts readily evolving hydrogen. Amalgamation of zinc with mercury reduces the reactivity by giving uniformity to the surface. Very pure zinc reacts readily with dilute acids if previously coated with copper by adding copper(II) sulphate ... [Pg.417]

Reference Electrodes and Liquid Junctions. The electrical cincuit of the pH ceU is completed through a salt bridge that usually consists of a concentrated solution of potassium chloride [7447-40-7]. The solution makes contact at one end with the test solution and at the other with a reference electrode of constant potential. The Hquid junction is formed at the area of contact between the salt bridge and the test solution. The mercury—mercurous chloride electrode, the calomel electrode, provides a highly reproducible potential in the potassium chloride bridge solution and is the most widely used reference electrode. However, mercurous chloride is converted readily into mercuric ion and mercury when in contact with concentrated potassium chloride solutions above 80°C. This disproportionation reaction causes an unstable potential with calomel electrodes. Therefore, the silver—silver chloride electrode and the thallium amalgam—thallous chloride electrode often are preferred for measurements above 80°C. However, because silver chloride is relatively soluble in concentrated solutions of potassium chloride, the solution in the electrode chamber must be saturated with silver chloride. [Pg.466]

Ideally a standard cell is constmcted simply and is characterized by a high constancy of emf, a low temperature coefficient of emf, and an emf close to one volt. The Weston cell, which uses a standard cadmium sulfate electrolyte and electrodes of cadmium amalgam and a paste of mercury and mercurous sulfate, essentially meets these conditions. The voltage of the cell is 1.0183 V at 20°C. The a-c Josephson effect, which relates the frequency of a superconducting oscillator to the potential difference between two superconducting components, is used by NIST to maintain the unit of emf. The definition of the volt, however, remains as the Q/A derivation described. [Pg.20]

Mercury layers plated onto the surface of analytical electrodes serve as Hquid metal coatings. These function as analytical sensors (qv) because sodium and other metals can be electroplated into the amalgam, then deplated and measured (see Electro analytical techniques). This is one of the few ways that sodium, potassium, calcium, and other active metals can be electroplated from aqueous solution. In one modification of this technique, a Hquid sample can be purified of trace metals by extended electrolysis in the presence of a mercury coating (35). [Pg.134]

The potentiometric micro detection of all aminophenol isomers can be done by titration in two-phase chloroform-water medium (100), or by reaction with iodates or periodates, and the back-titration of excess unreacted compound using a silver amalgam and SCE electrode combination (101). Microamounts of 2-aminophenol can be detected by potentiometric titration with cupric ions using a copper-ion-selective electrode the 3- and... [Pg.312]

Selection. The widely used cathode materials iaclude Hg, Pb, Al, Zn, Ni, Fe, Cu, Sn, Cd, and C. Because of mechanical iaconvenience, mercury is not an attractive electrode material for large cells. The preferred material is lead or an amalgam. Because Pb is soft and has a tendency to deform, however, it presents some mechanical problems. The problems can be overcome by hot dip or electroplating on steel, copper, or other rigid base material. [Pg.86]

ICP-SFMS (Thermo Finnigan, Flement) with cold vapour generation was developed with a guard electrode and a gold amalgamation device using an Au-sorbent for sample pre-concentration to improve the sensitivity. Instrumental parameters of ICP-SFMS such as take-up time, heating temperature of Au-sorbent, additional gas flow, and sample gas flow were optimized. Detection limit calculated as 3 times the standard deviation of 10 blanks was 0,05 ng/1, RSD = 7-9 %. [Pg.171]

Alternatively, hydroxylammonium salts can be made either (a) by the electrolytic reduction of aqueous nitric acid between amalgamated lead electrodes in the presence of H2SO4/HCI, or (b) by the hydrogenation of nitric oxide in acid solutions over a Pl/charcoal catalyst ... [Pg.431]

Electrodes and Galvanic Cells. The Silver-Silver Chloride Electrode. The Hydrogen Electrode. Half-cells Containing an Amalgam, Electrode. Two Cells Placed Back to Back. Cells Containing Equimolal Solutions. The Alkali Chlorides as Solutes. HC1 in Methanol or Ethanol Containing a Trace of Water. The Alkali Chlorides in Methanol-Water Mixtures. The Heal of Solution of HC1. Proton Transfer Equilibrium from Measurements of E.M.F. [Pg.217]

Electrodes and Galvanic Cells. In connection with Fig. 9 in See. 11 we discussed the removal of a positive atomic core from a metal. The same idea may be applied to any alloy that is a metallic conductor. When, for example, some potassium has been dissolved in liquid mercury, the valence electron from each potassium atom becomes a free electron, and we may discuss the removal of a K+ core from the surface of the amalgam. The work to remove the K+ into a vacuum may be denoted by Ycr When this amalgam is in contact with a solvent, we may consider the escape of a K+ into the solvent. The work Y to remove the positive core into the solvent is much smaller than Yvac. [Pg.217]

In the experiments to be described, in each case the half-cell was coupled to a Ag/AgOl half-cell, which in each case formed the positive electrode of the cell that is to say, on closing the external circuit, electrons flowed in the external circuit from the amalgam electrode to the silver electrode. This was the situation whether the solvent was water, or methanol, or a mixture of methanol and water. [Pg.220]

The Alkali Chlorides as Solutes. In order to make a similar study of the transference of KC1, NaCl, and LiCl between water and methanol-water mixtures, the hydrogen electrode was replaced by an amalgam electrode, as described in Sec. 111. The arrangement when two cells having potassium amalgam electrodes are placed back to back may be written... [Pg.222]

In an Evans diagram 89> the mixed potential can easily be found and also be verified by measuring the open circuit potential of a zinc-amalgam electrode in a Cu2+-ion solution. Even the complication by the simultaneous presence of another reducible species, e.g., Pbz+ can be graphically demonstrated for different limiting conditions... [Pg.230]

This figure demonstrates that also under potentiometric conditions (- no external current flow) electrochemical net reactions occur. The EMF of the zinc-amalgam in a given Zn2 -ion solution depends on the current-voltage characteristic of other ions (in this example, Cu2 and Pb2 are interfering ions with respect to the Zn2 equilibrium potential) at the amalgam electrode. EMF drifts are thus explainable. [Pg.231]

Amalgam electrodes, and liquid and glass membrane electrodes... [Pg.245]

As has been shown 82 85 88), the behavior of amalgam electrodes under conditions of cementation is very similar to that of liquid and glass membrane electrodes under stationary state conditions. Here, Eq. (2) should be written in the following way ... [Pg.245]

Another important primary battery is the mercury cell. It usually comes in very small sizes and is used in hearing aids, watches, cameras, and some calculators. The anode of this cell is a zinc-mercury amalgam the reacting species is zinc. The cathode is a plate made up of mercury(II) oxide, HgO. The electrolyte is a paste containing HgO and sodium or potassium hydroxide. The electrode reactions are... [Pg.500]

The silver reductor has a relatively low reduction potential (the Ag/AgCl electrode potential in 1M hydrochloric acid is 0.2245 volt), and consequently it is not able to effect many of the reductions which can be made with amalgamated zinc. The silver reductor is preferably used with hydrochloric acid solutions, and this is frequently an advantage. The various reductions which can be effected with the silver and the amalgamated zinc reductors are summarised in Table 10.11. ... [Pg.414]

The electrode reaction, assuming amalgam formation, can be represented ... [Pg.601]


See other pages where Electrodes amalgamation is mentioned: [Pg.615]    [Pg.30]    [Pg.615]    [Pg.30]    [Pg.509]    [Pg.518]    [Pg.518]    [Pg.532]    [Pg.147]    [Pg.175]    [Pg.311]    [Pg.293]    [Pg.169]    [Pg.555]    [Pg.49]    [Pg.54]    [Pg.75]    [Pg.464]    [Pg.218]    [Pg.219]    [Pg.220]    [Pg.222]    [Pg.273]    [Pg.230]    [Pg.239]    [Pg.246]   
See also in sourсe #XX -- [ Pg.35 ]




SEARCH



Amalgam

Amalgam electrode

Amalgamated

Amalgamators

Amalgamism

Amalgamization

© 2024 chempedia.info