Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode silver chloride

There are two procedures for doing this. The first makes use of a metal probe coated with an emitter such as polonium or Am (around 1 mCi) and placed above the surface. The resulting air ionization makes the gap between the probe and the liquid sufficiently conducting that the potential difference can be measured by means of a high-impedance dc voltmeter that serves as a null indicator in a standard potentiometer circuit. A submerged reference electrode may be a silver-silver chloride electrode. One generally compares the potential of the film-covered surface with that of the film-free one [83, 84]. [Pg.116]

Silvcr/Silvcr Chloride Electrodes Another common reference electrode is the silver/silver chloride electrode, which is based on the redox couple between AgCl and Ag. [Pg.473]

Reference Electrodes and Liquid Junctions. The electrical cincuit of the pH ceU is completed through a salt bridge that usually consists of a concentrated solution of potassium chloride [7447-40-7]. The solution makes contact at one end with the test solution and at the other with a reference electrode of constant potential. The Hquid junction is formed at the area of contact between the salt bridge and the test solution. The mercury—mercurous chloride electrode, the calomel electrode, provides a highly reproducible potential in the potassium chloride bridge solution and is the most widely used reference electrode. However, mercurous chloride is converted readily into mercuric ion and mercury when in contact with concentrated potassium chloride solutions above 80°C. This disproportionation reaction causes an unstable potential with calomel electrodes. Therefore, the silver—silver chloride electrode and the thallium amalgam—thallous chloride electrode often are preferred for measurements above 80°C. However, because silver chloride is relatively soluble in concentrated solutions of potassium chloride, the solution in the electrode chamber must be saturated with silver chloride. [Pg.466]

Electrodecantation or electroconvec tion is one of several operations in which one mobile component (or several) is to be separated out from less mobile or immobile ones. The mixture is introduced between two vertical semipermeable membranes for separating cations, anion membranes are used, and vice versa. When an electric field is apphed, the charged component migrates to one or another of the membranes but since it cannot penetrate the membrane, it accumulates at the surface to form a dense concentrated layer of particles which will sink toward the bottom of the apparatus. Near the top of the apparatus immobile components will be relatively pure. Murphy [J. Electrochem. Soc., 97(11), 405 (1950)] has used silver-silver chloride electrodes in place of membranes. Frilette [J. Phys. Chem., 61, 168 (1957)], using anion membranes, partially separated and Na, ... [Pg.2007]

Measuring electrodes for impressed current protection are robust reference electrodes (see Section 3.2 and Table 3-1) which are permanently exposed to seawater and remain unpolarized when a small control current is taken. The otherwise usual silver-silver chloride and calomel reference electrodes are used only for checking (see Section 16.7). All reference electrodes with electrolytes and diaphragms are unsuitable as long-term electrodes for potential-controlled rectifiers. Only metal-medium electrodes which have a sufficiently constant potential can be considered as measuring electrodes. The silver-silver chloride electrode has a potential that depends on the chloride content of the water [see Eq. (2-29)]. This potential deviation can usually be tolerated [3]. The most reliable electrodes are those of pure zinc [3]. They have a constant rest potential, are slightly polarizable and in case of film formation can be regenerated by an anodic current pulse. They last at least 5 years. [Pg.408]

Various types of reference electrodes have been considered in Section 20.3, and the potentials of these electrodes and their variation with the activity of the electrolyte are listed in Table 21.7, Chapter 21. It is appropriate, however to point out here that the saturated calomel electrode (S.C.E.), the silver-silver chloride electrode and the copper-copper sulphate electrode are the most widely used in corrosion testing and monitoring. [Pg.1010]

Electrodes and Galvanic Cells. The Silver-Silver Chloride Electrode. The Hydrogen Electrode. Half-cells Containing an Amalgam, Electrode. Two Cells Placed Back to Back. Cells Containing Equimolal Solutions. The Alkali Chlorides as Solutes. HC1 in Methanol or Ethanol Containing a Trace of Water. The Alkali Chlorides in Methanol-Water Mixtures. The Heal of Solution of HC1. Proton Transfer Equilibrium from Measurements of E.M.F. [Pg.217]

It is also possible in appropriate cases to measure by direct potentiometry the concentration of an ion which is not directly concerned in the electrode reaction. This involves the use of an electrode of the second kind , an example of which is the silver-silver chloride electrode which is formed by coating a silver wire with silver chloride this electrode can be used to measure the concentration of chloride ions in solution. [Pg.548]

Commercial forms of the electrode are available and in general are similar to the calomel electrode depicted in Fig. 15.1(h) with the replacement of the mercury by a silver electrode, and calomel by silver chloride. The remarks concerning clogging of the sintered disc, and the use of ion exchange membranes and double junctions to reduce this are equally applicable to the silver-silver chloride electrode. [Pg.553]

Indicator electrodes for anions may take the form of a gas electrode (e.g. oxygen electrode for OH- chlorine electrode for Cl-), but in many instances consist of an appropriate electrode of the second kind thus as shown in Section 15.1, the potential of a silver-silver chloride electrode is governed by the chloride-ion activity of the solution. Selective-ion electrodes are also available for many anions. [Pg.554]

M), and inserting a silver-silver chloride electrode. Provided that the internal hydrochloric acid solution is maintained at constant concentration, the potential of the silver-silver chloride electrode inserted into it will be constant, and so too will the potential between the hydrochloric acid solution and the inner surface of the glass bulb. Hence the only potential which can vary is that existing between the outer surface of the glass bulb and the test solution in which it is immersed, and so the overall potential of the electrode is governed by the hydrogen ion concentration of the test solution. [Pg.556]

Glass electrodes are now available as combination electrodes which contain the indicator electrode (a thin glass bulb) and a reference electrode (silver-silver chloride) combined in a single unit as depicted in Fig. 15.2(h). The thin glass bulb A and the narrow tube B to which it is attached are filled with hydrochloric acid and carry a silver-silver chloride electrode C. The wide tube D is fused to the lower end of tube B and contains saturated potassium chloride solution which is also saturated with silver chloride it carries a silver-silver chloride electrode E. The assembly is sealed with an insulating cap. [Pg.556]

The construction of these electrodes is exactly similar to that already described for the pH responsive glass electrode. They must of course be used in conjunction with a reference electrode and for this purpose a silver-silver chloride electrode is usually preferred. A double junction reference electrode is often used. The electrode response to the activity of the appropriate cation is given by the usual Nernst equation ... [Pg.558]

Reference electrodes are usually a calomel or a silver-silver chloride electrode. It is advisable that these be of the double-junction pattern so that potassium chloride solution from the electrode does not contaminate the test solution. Thus, for example, in titrations involving glacial acetic acid as solvent, the outer vessel of the double junction calomel electrode may be filled with glacial acetic acid containing a little lithium perchlorate to improve the conductance. [Pg.589]

Silver-silver chloride electrode 63, 553, (T) 554 Silylation (ch) gas, 236 liq, 219 Simultaneous spectrophotometric D chromium and manganese, 712 Sintered glass filtering crucibles 102 Soda lime 477... [Pg.873]

G. A. Linhart, The Applicability of the Precipitated Silver-Silver Chloride Electrode to the Measurement of the Activity of Hydrochloric Acid in Extremely Dilute Solutions", J. Am. Chem. Soc., 41, 1175-1180 (1919). [Pg.496]

Show how a silver-silver chloride electrode (silver in contact with solid AgCI and a solution of Cl- ions) and a hydrogen electrode can be used to measure (a) pH (b) pOH. [Pg.647]

A galvanic cell can be constructed from a silver-silver chloride electrode in contact with a solution containing chloride anions and an iron electrode in contact with a solution containing iron(IIt) cations. [Pg.1392]

C19-0061. Draw a sketch that shows a molecular view of the charge transfer processes that take place at a silver-silver chloride electrode in contact with aqueous HCl, undergoing reduction ... [Pg.1419]

A third method for chloride estimation which is commonly employed is the silver-silver chloride electrode. In this method the solution is usually diluted in a buffer, and the voltage generated measured. The problem with this procedure is that the electrode needs to be carefully maintained or problems occur. With larger volumes the chloride electrode has been very successful. [Pg.128]

In the tables we find i Ag+/Ag = 0.7996 V and 2 Agci/Ag = 0.2223 V. From the above it is clear that primarily the silver-silver chloride electrode functions as a pAg electrode, i.e., it measures oAg+ at an ionic strength above 0.01 (cf., extended Debye-Hiickel expressions) the calculation of [Ag+ ] becomes more difficult, and even more so for [Cl ], where the solubility product value is also involved. [Pg.63]

Consider a galvanic cell consisting of hydrogen and silver chloride electrodes ... [Pg.172]

The expression for the potential of electrodes of the second kind on the hydrogen scale can be derived from the affinity of the reaction occurring in a cell with a standard hydrogen electrode. For example, for the silver chloride electrode with the half-cell reaction... [Pg.186]


See other pages where Electrode silver chloride is mentioned: [Pg.532]    [Pg.893]    [Pg.466]    [Pg.51]    [Pg.1317]    [Pg.33]    [Pg.218]    [Pg.218]    [Pg.63]    [Pg.228]    [Pg.551]    [Pg.553]    [Pg.566]    [Pg.579]    [Pg.639]    [Pg.656]    [Pg.662]    [Pg.665]    [Pg.667]    [Pg.673]    [Pg.642]    [Pg.174]    [Pg.175]    [Pg.187]   
See also in sourсe #XX -- [ Pg.161 , Pg.162 , Pg.163 , Pg.164 , Pg.165 , Pg.175 , Pg.177 ]

See also in sourсe #XX -- [ Pg.2 , Pg.253 , Pg.404 ]

See also in sourсe #XX -- [ Pg.637 , Pg.661 , Pg.662 , Pg.666 , Pg.689 , Pg.718 ]

See also in sourсe #XX -- [ Pg.34 , Pg.39 , Pg.40 , Pg.79 , Pg.81 ]

See also in sourсe #XX -- [ Pg.21 , Pg.161 ]




SEARCH



Silver chloride

Silver electrode

© 2024 chempedia.info