Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Disposal methods disposed

WASTE DISPOSAL METHOD Disposal methods for waste DS2 and accumulated spill cleanup residues must comply with RCRA, state, and local hazardous waste regulations and procedures. If the wastes are corrosive, they have the EPA Hazardous Waste Number... [Pg.468]

DISPOSAL AND STORAGE METHODS remelt and reform or use normal disposal methods disposal must be in accordance with federal state, and local regulations store in a cool, dry area suitable for any general chemical storage area keep containers tightly closed do not store near direct sources of heat. [Pg.877]

While incineration is the preferred method of disposal for wastes containing high concentrations of organics, it becomes expensive for aqueous wastes with low concentrations of organics because auxiliary fuel is required, making the treatment expensive. Weak aqueous solutions of organics are better treated by wet oxidation (see Sec. 11.5). [Pg.301]

When viewing effluent treatment methods, it is clear that the basic problem of disposing of waste material safety is, in many cases, not so much solved but moved from one place to another. The fundamental problem is that once waste has been created, it cannot be destroyed. The waste can be concentrated or diluted, its physical or chemical form can be changed, but it cannot be destroyed. [Pg.319]

To reduce oil content to levels which meet disposal standards it is often necessary to employ rather more sophisticated methods. Two such techniques which can reduce oil in water to less than 40 ppm use gas flotation and hydrocyclone processes. [Pg.248]

If gas export or disposal is a problem gas re-injection into the reservoir may be an alternative, although this implies additional compression facilities. Gas production may be reduced using well intervention methods similar to those described for reducing water cut, though in this case up-dip wells would be isolated to cut back gas influx. Many of the options discussed under water treatment for multi-layered reservoirs apply equally well to the gas case. [Pg.362]

Progress in mean of modelisation and inverse problem solving [1] let us hope to dispose soon of these tools for flaws 3D imaging in Non Destructive Control with eddy current sensors. This will achieve a real improvement of the actual methods, mainly based upon signature analysis. But the actual eddy current probes used for steam generators tubes inspection in nuclear industry do not produce the adequate measurements and/or are not modelisable. [Pg.357]

The measuren.cnts are performed on a sample made from Inconell IN 718 placed at our disposal by Me oren- und Turbinen-Union Miinchen GmbH (MTU). The sample is of disk shape and has a curved side and a flat side, see also fig. 6. On the curved side MTU had detected a segregation reaching to the surface but with unknown depth. It had been detected by segregation etching and its existence was confirmed by eddy current testing. Both methods are successful only in such a special case where the segregation extends to the surface. [Pg.990]

By its nature, the application of direct dynamics requires a detailed knowledge of both molecular dynamics and quantum chemistry. This chapter is aimed more at the quantum chemist who would like to use dynamical methods to expand the tools at theh disposal for the study of photochemistry, rather than at the dynamicist who would like to learn some quantum chemishy. It hies therefore to introduce the concepts and problems of dynamics simulations, shessing that one cannot strictly think of a molecule moving along a trajectory even though this is what is being calculated. [Pg.256]

In a mechanistic study, the aim is not to quantitatively reproduce an experiment. As a result it is not necessary to use the methods outlined above. The question here is what drives a reaction in a particular direction, or what would happen if the molecule is driven in different ways. The initial conditions are then at the disposal of the investigator to be chosen in a way to answer the relevant question, using a suitable spread of positions and energies. [Pg.272]

The control of carbon dioxide emission from burning fossil fuels in power plants or other industries has been suggested as being possible with different methods, of which sequestration (i.e., collecting CO2 and injecting it to the depth of the seas) has been much talked about recently. Besides of the obvious cost and technical difficulties, this would only store, not dispose of, CO2 (although natural processes in the seas eventually can form carbonates, albeit only over very long periods of time). [Pg.217]

In comparison with most other analytical techniques, radiochemical methods are usually more expensive and require more time to complete an analysis. Radiochemical methods also are subject to significant safety concerns due to the analyst s potential exposure to high-energy radiation and the need to safely dispose of radioactive waste. [Pg.649]

Costs of various waste disposal methods ate summarized in Table 5. [Pg.232]

Table 5. Estimated U.S. Processing Costs of Waste Disposal Method ... Table 5. Estimated U.S. Processing Costs of Waste Disposal Method ...
The derivatives are hydroxyethyl and hydroxypropyl cellulose. AH four derivatives find numerous appHcations and there are other reactants that can be added to ceUulose, including the mixed addition of reactants lea ding to adducts of commercial significance. In the commercial production of mixed ethers there are economic factors to consider that include the efficiency of adduct additions (ca 40%), waste product disposal, and the method of product recovery and drying on a commercial scale. The products produced by equation 2 require heat and produce NaCl, a corrosive by-product, with each mole of adduct added. These products are produced by a paste process and require corrosion-resistant production units. The oxirane additions (eq. 3) are exothermic, and with the explosive nature of the oxiranes, require a dispersion diluent in their synthesis (see Cellulose ethers). [Pg.314]

The ratio of reactants had to be controlled very closely to suppress these impurities. Recovery of the acrylamide product from the acid process was the most expensive and difficult part of the process. Large scale production depended on two different methods. If soHd crystalline monomer was desired, the acrylamide sulfate was neutralized with ammonia to yield ammonium sulfate. The acrylamide crystallized on cooling, leaving ammonium sulfate, which had to be disposed of in some way. The second method of purification involved ion exclusion (68), which utilized a sulfonic acid ion-exchange resin and produced a dilute solution of acrylamide in water. A dilute sulfuric acid waste stream was again produced, and, in either case, the waste stream represented a... [Pg.134]

Manufacture Various methods for the manufacture of acrylates are summarized in Figure 1, showing thek dependence on specific raw materials. For a route to be commercially attractive, the raw material costs and utilization must be low, plant investment and operating costs not excessive, and waste disposal charges minimal. [Pg.151]

Thorium, uranium, and plutonium are well known for their role as the basic fuels (or sources of fuel) for the release of nuclear energy (5). The importance of the remainder of the actinide group Hes at present, for the most part, in the realm of pure research, but a number of practical appHcations are also known (6). The actinides present a storage-life problem in nuclear waste disposal and consideration is being given to separation methods for their recovery prior to disposal (see Waste treati nt, hazardous waste Nuclear reactors, waste managet nt). [Pg.212]

Disposal of exhausted soHds can be easily overlooked at the plant design stage, particularly when these have no intrinsic value alternative disposal methods might include landfiU of inert material or incineration, hydrolysis, or pyrolysis of organic materials. Liquid, soHd, and gaseous emissions are aU subject to the usual environmental considerations. [Pg.93]

Throughout the history of the development of fats and oils, many wet chemical methods have been developed to assess the quaUty of the raw materials and products. As sophisticated instmmentation develops, many of the wet methods are being replaced. Particular attention is being given to methods that eliminate the use of solvents which cause an environmental disposal problem. Many in-line sensors are also being developed to allow corrections of critical parameters to be made more quickly in the process. [Pg.133]

The overall reaction under controlled conditions provides a method for the disposal of fluorine by conversion to a salt ... [Pg.124]

Disposal. Fluorine can be disposed of by conversion to gaseous perfluorocarbons or fluoride salts. Because of the long atmospheric lifetimes of gaseous perfluorocarbons (see Atmospheric models), disposal by conversion to fluoride salts is preferred. The following methods are recommended scmbbing with caustic solutions (115,116) reaction with soHd disposal agents such as alumina, limestone, lime, and soda lime (117,118) and reaction with superheated steam (119). Scmbbing with caustic solution and, for dilute streams, reaction with limestone, are practiced on an industrial scale. [Pg.131]

A method for the fractionation of plasma, allowing albumin, y-globulin, and fibrinogen to become available for clinical use, was developed during World War II (see also Fractionation, blood-plasma fractionation). A stainless steel blood cell separation bowl, developed in the early 1950s, was the earhest blood cell separator. A disposable polycarbonate version of the separation device, now known as the Haemonetics Latham bowl for its inventor, was first used to collect platelets from a blood donor in 1971. Another cell separation rotor was developed to faciUtate white cell collections. This donut-shaped rotor has evolved to the advanced separation chamber of the COBE Spectra apheresis machine. [Pg.519]

The specific design most appropriate for biomass, waste combustion, and energy recovery depends on the kiads, amounts, and characteristics of the feed the ultimate energy form desired, eg, heat, steam, electric the relationship of the system to other units ia the plant, iadependent or iategrated whether recycling or co-combustion is practiced the disposal method for residues and environmental factors. [Pg.21]

Most carbide acetylene processes are wet processes from which hydrated lime, Ca(OH)2, is a by-product. The hydrated lime slurry is allowed to settle in a pond or tank after which the supernatant lime-water can be decanted and reused in the generator. Federal, state, and local legislation restrict the methods of storage and disposal of carbide lime hydrate and it has become increasingly important to find consumers for the by-product. The thickened hydrated lime is marketed for industrial wastewater treatment, neutrali2ation of spent pickling acids, as a soil conditioner in road constmction, and in the production of sand-lime bricks. [Pg.379]

The yield of hydroquinone is 85 to 90% based on aniline. The process is mainly a batch process where significant amounts of soHds must be handled (manganese dioxide as well as metal iron finely divided). However, the principal drawback of this process resides in the massive coproduction of mineral products such as manganese sulfate, ammonium sulfate, or iron oxides which are environmentally not friendly. Even though purified manganese sulfate is used in the agricultural field, few solutions have been developed to dispose of this unsuitable coproduct. Such methods include MnSO reoxidation to MnO (1), or MnSO electrochemical reduction to metal manganese (2). None of these methods has found appHcations on an industrial scale. In addition, since 1980, few innovative studies have been pubUshed on this process (3). [Pg.487]


See other pages where Disposal methods disposed is mentioned: [Pg.1081]    [Pg.604]    [Pg.357]    [Pg.2061]    [Pg.3013]    [Pg.217]    [Pg.218]    [Pg.644]    [Pg.135]    [Pg.182]    [Pg.388]    [Pg.407]    [Pg.232]    [Pg.354]    [Pg.536]    [Pg.37]    [Pg.46]    [Pg.160]    [Pg.287]    [Pg.24]    [Pg.44]    [Pg.372]    [Pg.381]    [Pg.419]    [Pg.40]    [Pg.116]    [Pg.129]    [Pg.139]    [Pg.371]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Container disposal, current methods

Culture media disposal methods

Disposal methods

Disposal methods

Disposal methods United States

Disposal methods blades

Disposal methods burning

Disposal methods components

Disposal methods contaminated equipment

Disposal methods energy recovery from

Disposal methods generation

Disposal methods incineration

Disposal methods landfill methane from

Disposal methods landfilling

Disposal methods media

Disposal methods needles

Disposal methods recovered

Disposal methods recyclables

Disposal methods system design

Disposal methods, organophosphate

Environmental Protection and Disposal Methods

Explosive chemicals disposal methods

Hazardous waste disposal methods

Waste disposal methods

© 2024 chempedia.info