Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fundamental problem

When viewing effluent treatment methods, it is clear that the basic problem of disposing of waste material safety is, in many cases, not so much solved but moved from one place to another. The fundamental problem is that once waste has been created, it cannot be destroyed. The waste can be concentrated or diluted, its physical or chemical form can be changed, but it cannot be destroyed. [Pg.319]

Restoring of SD of parameters of stress field is based on the effect of acoustoelasticity. Its fundamental problem is determination of relationship between US wave parameters and components of stresses. To use in practice acoustoelasticity for SDS diagnosing, it is designed matrix theory [Bobrenco, 1991]. For the description of the elastic waves spreading in the medium it uses matrices of velocity v of US waves spreading, absolute A and relative... [Pg.250]

T he core-core interaction between pairs of nuclei was also changed in MINDO/3 from the fiiriu used in CNDO/2. One way to correct the fundamental problems with CNDO/2 such as Ihe repulsion between two hydrogen atoms (or indeed any neutral molecules) at all di -l.inces is to change the core-core repulsion term from a simple Coulombic expression (/ ., ii = ZaZb/Rab) to ... [Pg.115]

The fundamental problem of oligodeoxyribonucleotide synthesis is the efficient formation of the intemucleotidic phosphodiester bond specifically between C-3 and C-5 positions of two adjacent nucleosides. Any functional group (NH of nucleic base the other OH of deoxy-... [Pg.215]

If we randomly select a single member from a population, what will be its most likely value This is an important question, and, in one form or another, it is the fundamental problem for any analysis. One of the most important features of a population s probability distribution is that it provides a way to answer this question. [Pg.75]

The goal of an analytical separation is to remove either the analyte or the interferent from the sample matrix. To achieve a separation there must be at least one significant difference between the chemical or physical properties of the analyte and interferent. Relying on chemical or physical properties, however, presents a fundamental problem—a separation also requires selectivity. A separation that completely removes an interferent may result in the partial loss of analyte. Altering the separation to minimize the loss of analyte, however, may leave behind some of the interferent. [Pg.202]

Whether AH for a projected reaction is based on bond-energy data, tabulated thermochemical data, or MO computations, there remain some fundamental problems which prevent reaching a final conclusion about a reaction s feasibility. In the first place, most reactions of interest occur in solution, and the enthalpy, entropy, and fiee energy associated with any reaction depend strongly on the solvent medium. There is only a limited amount of tabulated thermochemical data that are directly suitable for treatment of reactions in organic solvents. Thermodynamic data usually pertain to the pure compound. MO calculations usually refer to the isolated (gas phase) molecule. Estimates of solvation effects must be made in order to apply either experimental or computational data to reactions occurring in solution. [Pg.191]

USC may be modeled as a power-series expansion of non-CCF component failure nates. No a priori physical information is introduced, so the methods are ultimately dependent on the accuracy of data to support such an expansion. A fundamental problem with this method is that if the system failure rate were known such as is required for the fitting process then it would not be neces.sary to construct a model. In practice information on common cause coupling in systems cannot be determined directly. NUREG/CR-2300 calls this "Type 3" CCF. [Pg.124]

Shock-induced solid state chemistry represents the most complex fundamental problem ever encountered in shock-compression science. All the mechanical and physical complications of other work are present, yet the additional chemical complications are added. Indeed, all mechanical, physical, and chemical aspects of the problem are intimately intertwined. Chemical investigations promise to provide a description of shock compression that differs considerably from that to which we have become accustomed. Nevertheless, a full description of the process requires contributions from a number... [Pg.198]

From the time when Thorny and Duval presented the results of their early experiments (late 1960s) the field has grown enormously. Hundreds of papers and several monographs have been published and many eonferenees have been held to present new results of experimental and theoretieal studies and to exehange ideas as well as to stimulate further developments. A vast majority of all that aetivity has been direeted towards the understanding of the fundamental problems of phase transitions on uniform surfaees, whereas problems of the surfaee heterogeneity efleets have been mueh less intensively studied [11,57,122-126],... [Pg.262]

Thin polymeric films have important industrial apphcations (e.g., as protective coatings, lubricants, adhesives, dielectric or nonlinear optic devices, etc.) and pose many fundamental problems of film stability [1,2,4]. An important question, therefore, is whether these films break up and spontaneously dewett the substrate, resulting in the formation of droplets. The... [Pg.614]

A fundamental problem in the alkylation of enamines, which is inherent in the bidentate system, is the competition between the desired carbon alkylation and attack at the nitrogen. With unactivated alkyl halides (3,267), this becomes especially serious with the enamines derived fromcycloheptan-one, cyclooctanone, cyclononanone, and enamines derived from aldehydes. Increasing amounts of carbon alkylation are found with the more reactive allyl and benzyl halides (268-273). However, with allyl halides one also observes increasing amounts of dialkylation of enamines. [Pg.352]

As noted above, it is very difficult to calculate entropic quantities with any reasonable accmacy within a finite simulation time. It is, however, possible to calculate differences in such quantities. Of special importance is the Gibbs free energy, as it is the natoal thermodynamical quantity under normal experimental conditions (constant temperature and pressme. Table 16.1), but we will illustrate the principle with the Helmholtz free energy instead. As indicated in eq. (16.1) the fundamental problem is the same. There are two commonly used methods for calculating differences in free energy Thermodynamic Perturbation and Thermodynamic Integration. [Pg.380]

Just as was the case with simple perceptrons, the multi-layer perceptron s fundamental problem is to learn to associate given inputs with desired outputs. The input layer consists of as many neurons as are necessary to set up some natural... [Pg.540]

While the LEs are particularly relevant for the kind of static trench warfare and artillery duels that characterized most of World War I, they are too simple and lack the spatial degrees of freedom to realistically model modern combat. The fundamental problem is that they idealize combat much in the same way as Newton s laws idealize physics. [Pg.593]

The point of this terse introduction is that cellular automata represent not just a formalism for describing a certain particular class of behaviors (lattice gas simulations of fluid dynamics, models of chemical reactions and diffusion processes, etc.), but a much more general template for original and heretofore untapped ways of looking at a large class of unsolved or only poorly understood fundamental problems. [Pg.607]

This definition outlines in very broad terms the scope of analytical chemistry. When a completely unknown sample is presented to an analyst, the first requirement is usually to ascertain what substances are present in it. This fundamental problem may sometimes be encountered in the modified form of deciding what impurities are present in a given sample, or perhaps of confirming that certain specified impurities are absent. The solution of such problems lies within the province of qualitative analysis and is outside the scope of the present volume. [Pg.3]

When esterase models are designed, several important and fundamental problems have to be solved. Systematic studies on other interactions, such as hydrogen-bonding and charge-transfer type forces have not been fully performed. Furthermore, various cooperative actions between different kinds of interactions, e. g. the correlation between the attraction of substrate and repulsion of a product by a polyelectrolyte catalyst, has not yet been carried. [Pg.176]

The identification of particles adsorbed on solid surfaces and recognition of their properties is one of the fundamental problems in research on adsorption and heterogeneous catalysis. Desorption of the adsorbed species from a surface and its subsequent analysis is an important method for solv-... [Pg.343]

A substantial amount of indirect evidence supports the contention that the induction of apoptosis in tumor cells is critical to successful therapy. Cancer therapy might therefore be viewed as an attempt to induce apoptosis in a population of cells that have undergone selection for apoptotic defects. If correct, this hypothesis would suggest why cancer therapy is in many cases unsuccessful. However, recent studies indicate that this fundamental problem can be circumvented. Progress in the identification of molecules key to the cell death pathways has led to a growing understanding of how apoptosis occurs [3]. It has become clear that pathways to apoptosis are numerous and often interconnected. A solution to the clinical problem of therapeutic resistance, then, may lie in the fact that there appears to be multiple ways that a cell death program can be implemented. [Pg.317]

A fundamental problem that occurs even in fully industrialized countries and large international companies, is that whereas many smaller boiler plant managers purchase well-designed and efficient boilers, pumps, and auxiliaries from recognized quality manufacturers and distributors, the design and construction of FW tanks and even the overall boiler house system may be placed in the hands of persons with inadequate training and experience. [Pg.110]

Thus, each of these fundamental problems may manifest itself as either a stand-alone problem or a compound problem. They can also support or promote the development of other problems. Each fundamental problem can in turn be subcategorized and may arise in the boiler plant by any number of different mechanisms, ultimately affecting a wide variety of equipment. [Pg.141]

In the next section we describe a very simple model, which we shall term the crystalline model , which is taken to represent the real, complicated crystal. Some additional, more physical, properties are included in the later calculations of the well-established theories (see Sect. 3.6 and 3.7.2), however, they are treated as perturbations about this basic model, and depend upon its being a good first approximation. Then, Sect. 2.1 deals with the information which one would hope to obtain from equilibrium crystals — this includes bulk and surface properties and their relationship to a crystal s melting temperature. Even here, using only thermodynamic arguments, there is no common line of approach to the interpretation of the data, yet this fundamental problem does not appear to have received the attention it warrants. The concluding section of this chapter summarizes and contrasts some further assumptions made about the model, which then lead to the various growth theories. The details of the way in which these assumptions are applied will be dealt with in Sects. 3 and 4. [Pg.226]


See other pages where Fundamental problem is mentioned: [Pg.3048]    [Pg.602]    [Pg.196]    [Pg.482]    [Pg.375]    [Pg.357]    [Pg.27]    [Pg.107]    [Pg.907]    [Pg.33]    [Pg.219]    [Pg.221]    [Pg.107]    [Pg.196]    [Pg.47]    [Pg.274]    [Pg.447]    [Pg.636]    [Pg.636]    [Pg.772]    [Pg.792]    [Pg.138]    [Pg.169]    [Pg.246]    [Pg.241]    [Pg.54]    [Pg.967]    [Pg.160]   


SEARCH



Computational chemistry fundamental problems

Fundamental Problems in Pure Liquid Electrolytes

Fundamental Steam-Waterside Problems and Water Treatment Objectives

Fundamental equations problems

Ionization and fundamental problems in gas analysis

Phase transitions fundamental problems

The Fundamental Problems

© 2024 chempedia.info