Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Disperse, medium systems

The data displayed in Tables 6.1 and 6.2 illustrate the strong correlation existing between the CFTs and the corresponding 0-temperatures for both aqueous and nonaqueous dispersion media. These results were obtained by five different groups of workers and cover some 13 different stabilizing moiety/dispersion medium systems. It is important to stress that it is not possible in general to equate the CFT with Ae 0-temperature. [Pg.115]

Among various isotherms, Langmuir and Freundlich are foimd to be the two most popular models. It is important to point out that the above isotherms are often applied to the adsorptions case by case. One model may be suitable for particular adsorbent-adsorbate-dispersion medium system whereas deviates for other systems. However, by plotting the suitable terms to obtain linear lines, the regression constants can be obtained such that the higher regression constant for particular model indicates its more suitability toward the concerned system. [Pg.586]

This is because the effect of the dispersed soHd, rather than the dispersing medium, is usually more significant. However, the latter should not be ignored. Many industrial problems involving unacceptably high viscosities in dispersed systems are solved by substituting solvents of lower viscosity. [Pg.173]

Nomenclature. Colloidal systems necessarily consist of at least two phases, the coUoid and the continuous medium or environment in which it resides, and their properties gready depend on the composition and stmcture of each phase. Therefore, it is useful to classify coUoids according to their states of subdivision and agglomeration, and with respect to the dispersing medium. The possible classifications of colloidal systems are given in Table 2. The variety of systems represented in this table underscores the idea that the problems associated with coUoids are usuaUy interdisciplinary in nature and that a broad scientific base is required to understand them completely. [Pg.394]

Stable particles in sufficient number, all the oligo-radi-cals and nuclei generated in the continuous phase are captured by the mature particles, no more particles form, and the particle formation stage is completed. The primary particles formed by the nucleation process are swollen by the unconverted monomer and/or polymerization medium. The polymerization taking place within the individual particles leads to resultant uniform microspheres in the size range of 0.1-10 jjLvn. Various dispersion polymerization systems are summarized in Table 4. [Pg.202]

To understand how the dispersed phase is deformed and how morphology is developed in a two-phase system, it is necessary to refer to studies performed specifically on the behavior of a dispersed phase in a liquid medium (the size of the dispersed phase, deformation rate, the viscosities of the matrix and dispersed phase, and their ratio). Many studies have been performed on both Newtonian and non-Newtonian droplet/medium systems [17-20]. These studies have shown that deformation and breakup of the droplet are functions of the viscosity ratio between the dispersity phase and the liquid medium, and the capillary number, which is defined as the ratio of the viscous stress in the fluid, tending to deform the droplet, to the interfacial stress between the phases, tending to prevent deformation ... [Pg.586]

Flow behavior of the polymer blends is determined by their structure, which is governed by the degree of dispersion of the component and by the mode of their distribution. For blends having identical compositions, it is possible to produce systems in which one and the same component may be either a dispersion medium or a dispersed phase [1]. This behavior of the polyblend systems depends on various parameters, the most important of which is the blending sequence. It is, therefore, difficult to obtain a uniform composition property relationship for the polymer blends even though the composition remains identical. [Pg.611]

The existence of yield stress Y at shear strains seems to be the most typical feature of rheological properties of highly filled polymers. A formal meaing of this term is quite obvious. It means that at stresses lower than Y the material behaves like a solid, i.e. it deforms only elastically, while at stresses higher than Y, like a liquid, i.e. it can flow. At a first approximation it may be assumed that the material is not deformed at all, if stresses are lower than Y. In this sense, filled polymers behave as visco-plastic media with a low-molecular and low-viscosity dispersion medium. This analogy is not random as will be stressed below when the values of the yield stress are compared for the systems with different dispersion media. The existence of yield stress in its physical meaning must be correlated with the strength of a structure formed by the interaction between the particles of a filler. [Pg.71]

Thus, measuring rheological properties of dispersions of low-molecular-weight (with viscosity about 60 Pa s) and high-molecular-weight poly(isobutilene) (with viscosity about 10s Pa s) with the same content of filler we see that the values of creep viscosity r c of these systems are practically equal, in spite of the difference of the viscosity of the dispersion medium more than 1000 times [3],... [Pg.73]

In order to complete the discussion of methodical problems, we should mention two more methods of determining yield stress. Figure 6 shows that for plastic disperse systems with low-molecular dispersion medium, when a constant rate of deformation, Y = const., is given, the dependence x on time t passes through a maximum rm before a stationary value of shear stress ts is reached. We may assume that the value of the maximal shear stress xm is the maximum strength of the structure which must be destroyed so that the flow can occur. Here xm as well as ts do not depend or depend weakly on y, like Y. The difference between tm and xs takes into account the difference between maximum stress and yield stress. For filled polymer melts at low shear rates Tm Ts> i,e- fhese quantities can be identified with Y. [Pg.76]

There is a great number of data indicating that the character of a net-formation in a disperse system both depends on the nature of a filler and dispersion medium. [Pg.80]

The situation becomes most complicated in multicomponent systems, for example, if we speak about filling of plasticized polymers and solutions. The viscosity of a dispersion medium may vary here due to different reasons, namely a change in the nature of the solvent, concentration of the solution, molecular weight of the polymer. Naturally, here the interaction between the liquid and the filler changes, for one, a distinct adsorption layer, which modifies the surface and hence the activity (net-formation ability) of the filler, arises. Therefore in such multicomponent systems in the general case we can hardly expect universal values of yield stress, depending only on the concentration of the filler. Experimental data also confirm this conclusion [13],... [Pg.80]

This formula may be useful as a rheological method for determining the thickness of adsorption layer, which is formed as a result of interaction between a dispersion medium and filler, by the results of measuring the t] versus q> dependence. Especially curious phenomena, connected with surface effects, arise when a mixture of fillers of different nature is used according to concentration of an active filler the introduction of the second (inert) filler can either increase or decrease the viscosity of a multicomponent system [35],... [Pg.91]

Both the dispersed component and the dispersion medium extend themselves continuously throughout the whole system. [Pg.23]

Disperse systems can be classified in various ways. Classification based on the physical state of the two constituent phases is presented in Table 1. The dispersed phase and the dispersion medium can be either solids, liquids, or gases. Pharmaceutically most important are suspensions, emulsions, and aerosols. (Suspensions and emulsions are described in detail in Secs. IV and V pharmaceutical aerosols are treated in Chapter 14.) A suspension is a solid/liquid dispersion, e.g., a solid drug that is dispersed within a liquid that is a poor solvent for the drug. An emulsion is a li-quid/liquid dispersion in which the two phases are either completely immiscible or saturated with each other. In the case of aerosols, either a liquid (e.g., drug solution) or a solid (e.g., fine drug particles) is dispersed within a gaseous phase. There is no disperse system in which both phases are gases. [Pg.242]

Table 1 Classification Scheme of Disperse Systems on the Basis of the Physical State of the Dispersed Phase and the Dispersion Medium... [Pg.243]

In colloid science, colloidal systems are commonly classified as being lyophilic or lyophobic, based on the interaction between the dispersed phase and the dispersion medium. In lyophilic dispersions, there is a considerable affinity between the two constituent phases (e.g., hydrophilic polymers in water, polystyrene in benzene). The more restrictive terms hydrophilic and oleophilic can be used when the external phase is water and a nonpolar liquid, respectively. In contrast, in lyophobic systems there is little attraction between the two phases (e.g., aqueous dispersions of sulfur). If the dispersion medium is water, the term hydrophobic can be used. Resulting from the high affinity between the dispersed phase and the dispersion medium, lyophilic systems often form spontaneously and are considered as being thermodynamically stable. On the other hand, lyophobic systems generally do not form spontaneously and are intrinsically unstable. [Pg.244]

One of the most obvious properties of a disperse system is the vast interfacial area that exists between the dispersed phase and the dispersion medium [48-50]. When considering the surface and interfacial properties of the dispersed particles, two factors must be taken into account the first relates to an increase in the surface free energy as the particle size is reduced and the specific surface increased the second deals with the presence of an electrical charge on the particle surface. This section covers the basic theoretical concepts related to interfacial phenomena and the characteristics of colloids that are fundamental to an understanding of the behavior of any disperse systems having larger dispersed phases. [Pg.247]

The interactions between similar particles, dissimilar particles, and the dispersion medium constitute a complex but essential part of dispersion technology. Such interparticle interactions include both attractive and repulsive forces. These forces depend upon the nature, size, and orientation of the species, as well as on the distance of separation between and among the particles of the dispersed phase and the dispersion medium, respectively. The balance between these forces determines the overall characteristics of the system. [Pg.247]

The particles in a disperse system with a liquid or gas being the dispersion medium are thermally mobile and occasionally collide as a result of the Brownian motion. As the particles approach one another, both attractive and repulsive forces are operative. If the attractive forces prevail, agglomerates result indicating an instability of the system. If repulsive forces dominate, a homogeneously dispersed or stable dispersion remains. [Pg.247]

The zeta potential is a measurable indication of the apparent particle charge in the dispersion medium. When its value is relatively high, the repulsive forces usually exceed the attractive forces. Accordingly, the particles are individually dispersed and are said to be deflocculated. Thus, each particle settles separately, and the rate of sedimentation is relatively small. The settling particles have plenty of time to pack tightly by falling over one another to form an impacted bed. The sedimentation volume of such a system is low, and the sediment is difficult to redisperse. The supernatant remains cloudy even when settling is apparent. [Pg.261]

A colloid is defined as a system consisting of discrete particles in the size range of 1 nm to 1 pm, distributed within a continuous phase [153], On the basis of the interaction of particles, molecules, or ions of the disperse phase with molecules of the dispersion medium-, colloidal systems can be classified as being lyophilic or lyophobic. In lyophilic systems, the disperse phase molecules are dissolved within the continuous phase and in the colloidal size range or spontaneously form aggregates in the colloidal size range (association systems). In lyophobic systems, the disperse phase is very poorly soluble or insoluble in the continuous phase. During the last several decades, the use of colloids in... [Pg.273]

An aqueous colloidal polymeric dispersion by definition is a two-phase system comprised of a disperse phase and a dispersion medium. The disperse phase consists of spherical polymer particles, usually with an average diameter of 200-300 nm. According to their method of preparation, aqueous colloidal polymer dispersions can be divided into two categories (true) latices and pseudolatices. True latices are prepared by controlled polymerization of emulsified monomer droplets in aqueous solutions, whereas pseudolatices are prepared starting from already polymerized macromolecules using different emulsification techniques. [Pg.274]

The preparation of satisfactory disperse systems consists of three main steps preparing the internal phase in the proper size range, dispersing the internal phase in the dispersion medium, and, finally, stabilizing the resultant product. These three steps may be done sequentially, but in many cases (e.g., emulsions), they are usually done simultaneously. [Pg.282]

In common with some other authors (18-20), Napper removed excess stabilizer from the dispersion medium so as to give the dispersed particles full surface coverage, leaving negligible amounts of free polymer in solution. As the solvency was worsened, no more polymer could be adsorbed, so that critical flocculation conditions do not necessarily correspond to surface saturation. In the present work, which may refer more closely with some practical applications, the stabilizer is kept at the plateau adsorption level but at the expense of complicating the system by the presence of free polymer. Clarke and Vincent (21) have reported on the effect of free polystyrene on the stability of silica with terminally-attached sytrene chains, but the very considerable differences to our studies make an assessment of the possible role played by unadsorbed polymer unproductive. [Pg.315]


See other pages where Disperse, medium systems is mentioned: [Pg.156]    [Pg.394]    [Pg.394]    [Pg.397]    [Pg.16]    [Pg.68]    [Pg.201]    [Pg.207]    [Pg.207]    [Pg.210]    [Pg.211]    [Pg.770]    [Pg.93]    [Pg.243]    [Pg.245]    [Pg.248]    [Pg.249]    [Pg.249]    [Pg.259]    [Pg.260]    [Pg.264]    [Pg.265]    [Pg.74]    [Pg.317]    [Pg.328]    [Pg.229]   
See also in sourсe #XX -- [ Pg.19 , Pg.21 , Pg.27 , Pg.29 ]




SEARCH



Dispersal medium

Disperse medium

Disperse systems

Dispersed medium

Dispersed systems

Dispersed systems continuous medium

Dispersed systems, dispersions

Dispersion medium

Dispersion systems aqueous solution medium

Dispersive systems

© 2024 chempedia.info