Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Attraction between

The electrovalent bond is formed by electrostatic attraction between oppositely charged ions. Thus Na, with one outer electron, loses this electron to achieve the noble gas Ne structure, while Cl with seven outer electrons, gains one electron to achieve the Ar structure. [Pg.415]

Surface tension arises at a fluid to fluid interface as a result of the unequal attraction between molecules of the same fluid and the adjacent fluid. For example, the molecules of water in a water droplet surrounded by air have a larger attraction to each other than to the adjacent air molecules. The imbalance of forces creates an inward pull which causes the droplet to become spherical, as the droplet minimises its surface area. A surface tension exists at the interface of the water and air, and a pressure differential exists between the water phase and the air. The pressure on the water side is greater due to the net inward forces... [Pg.120]

We have two interaction potential energies between uncharged molecules that vary with distance to the minus sixth power as found in the Lennard-Jones potential. Thus far, none of these interactions accounts for the general attraction between atoms and molecules that are neither charged nor possess a dipole moment. After all, CO and Nj are similarly sized, and have roughly comparable heats of vaporization and hence molecular attraction, although only the former has a dipole moment. [Pg.228]

In this section we consider electromagnetic dispersion forces between macroscopic objects. There are two approaches to this problem in the first, microscopic model, one assumes pairwise additivity of the dispersion attraction between molecules from Eq. VI-15. This is best for surfaces that are near one another. The macroscopic approach considers the objects as continuous media having a dielectric response to electromagnetic radiation that can be measured through spectroscopic evaluation of the material. In this analysis, the retardation of the electromagnetic response from surfaces that are not in close proximity can be addressed. A more detailed derivation of these expressions is given in references such as the treatise by Russel et al. [3] here we limit ourselves to a brief physical description of the phenomenon. [Pg.232]

Fig. VI-3. Attraction between fused-silica flat plates and spheres of radius 413.5 cm (I) or 83.75 cm (II). The lines are drawn with a slope of -3.00. (From Ref. 27.)... Fig. VI-3. Attraction between fused-silica flat plates and spheres of radius 413.5 cm (I) or 83.75 cm (II). The lines are drawn with a slope of -3.00. (From Ref. 27.)...
While the confirmation of the predicted long-range dispersion attraction between surfaces in air has been a major experimental triumph, the forces between particles in solution are of more general interest in colloid and surface chemistry. The presence of a condensed medium between the surfaces... [Pg.239]

When a molecule is isolated from external fields, the Hamiltonian contains only kinetic energy operators for all of the electrons and nuclei as well as temis that account for repulsion and attraction between all distinct pairs of like and unlike charges, respectively. In such a case, the Hamiltonian is constant in time. Wlien this condition is satisfied, the representation of the time-dependent wavefiinction as a superposition of Hamiltonian eigenfiinctions can be used to detemiine the time dependence of the expansion coefficients. If equation (Al.1.39) is substituted into the tune-dependent Sclirodinger equation... [Pg.13]

The adliesion and fiision mechanisms between bilayers have also been studied with the SEA [M, 100]. Kuhl et al [17] found that solutions of short-chained polymers (PEG) could produce a short-range depletion attraction between lipid bilayers, which clearly depends on the polymer concentration (fignre Bl.20.1 It. This depletion attraction was found to mduce a membrane fusion widiin 10 minutes that was observed, in real-time, using PECO fringes. There has been considerable progress in the preparation of fluid membranes to mimic natural conditions in the SEA [ ], which promises even more exciting discoveries in biologically relevant areas. [Pg.1742]

The second case involves non-adsorbing polymer chains in solution. It was realized by Asakura aird Oosawa (AO) [50] aird separately by Vrij [51] tlrat tlrese chains will give rise to air effective attraction between colloidal particles. This is kirowir as depletion attraction (see figure C2.6.4. We will summarize tire AO tlreory to explain tlris. [Pg.2679]

In extensively deionized suspensions, tliere are experimental indications for effective attractions between particles, such as long-lived void stmctures [89] and attractions between particles confined between charged walls [90]. Nevertlieless, under tliese conditions tire DLVO tlieory does seem to describe interactions of isolated particles at tire pair level correctly [90]. It may be possible to explain tire experimental observations by taking into account explicitly tire degrees of freedom of botli tire colloidal particles and tire small ions [91, 92]. [Pg.2687]

In section C2.6.4.3 it was shown how tlie addition of non-adsorbing polymer chains induces a depletion attraction between colloidal particles. If sufficient polymer is added, tliese attractions can be strong enough to induce a phase separation of tire colloidal particles. An early application of tliis was tire creaming of mbber latex [93]. [Pg.2688]

Hamaker H C 1937 London-van der Waals attraction between spherical particles Physica 4 1058-72... [Pg.2691]

In substances which are liquid or gaseous at ordinary temperature, the forces of attraction between the particles are so weak that thermal vibration is sufficient for them to be broken. These substances can be converted into solids by cooling to reduce the thermal energy. [Pg.27]

The ability of living organisms to differentiate between the chemically similar sodium and potassium ions must depend upon some difference between these two ions in aqueous solution. Essentially, this difference is one of size of the hydrated ions, which in turn means a difference in the force of electrostatic (coulombic) attraction between the hydrated cation and a negatively-charged site in the cell membrane thus a site may be able to accept the smaller ion Na (aq) and reject the larger K (aq). This same mechanism of selectivity operates in other ion-selection processes, notably in ion-exchange resins. [Pg.124]

The hydroxide of lithium, although soluble in water, is a weak base owing to the great attraction between the Li" and OH ions (p. 74) the hydroxide of beryllium is really a neutral, insoluble... [Pg.134]

The increases in melting point and boiling point arise because of increased attraction between the free atoms these forces of attraction are van der Waal s forces (p. 47) and they increase with increase of size. These forces are at their weakest between helium atoms, and helium approaches most closely to the ideal gas liquid helium has some notable characteristics, for example it expands on cooling and has very high thermal conductivity. [Pg.354]

Every electron in a molecule has a Coulombic attraction to its own nucleus Hii = J iH idx. In addition, it has an athaction to all other nuclei in the molecule Hij = J Coulombic attraction between nuclei and the electrons normally... [Pg.202]

The dawn of the nineteenth century saw a drastic shift from the dominance of French chemistry to first English-, and, later, German-influenced chemistry. Lavoisier s dualistic views of chemical composition and his explanation of combustion and acidity were landmarks but hardly made chemistry an exact science. Chemistry remained in the nineteenth century basically qualitative in its nature. Despite the Newtonian dream of quantifying the forces of attraction between chemical substances and compiling a table of chemical affinity, no quantitative generalization emerged. It was Dalton s chemical atomic theory and the laws of chemical combination explained by it that made chemistry an exact science. [Pg.28]

Atoms combine with one another to give compounds having properties different from the atoms they contain The attractive force between atoms m a compound is a chemical bond One type of chemical bond called an ionic bond, is the force of attraction between oppositely charged species (ions) (Figure 1 4) Ions that are positively charged are referred to as cations, those that are negatively charged are anions... [Pg.10]

Were we to simply add the ionization energy of sodium (496 kJ/mol) and the electron affin ity of chlorine (—349 kJ/mol) we would conclude that the overall process is endothermic with AH° = +147 kJ/mol The energy liberated by adding an electron to chlorine is msuf ficient to override the energy required to remove an electron from sodium This analysis however fails to consider the force of attraction between the oppositely charged ions Na" and Cl which exceeds 500 kJ/mol and is more than sufficient to make the overall process exothermic Attractive forces between oppositely charged particles are termed electrostatic, or coulombic, attractions and are what we mean by an ionic bond between two atoms... [Pg.12]

Section 1 2 An ionic bond is the force of electrostatic attraction between two oppo sitely charged ions Atoms at the upper right of the periodic table espe cially fluorine and oxygen tend to gam electrons to form anions Elements toward the left of the periodic table especially metals such as sodium tend to lose electrons to form cations Ionic bonds m which car bon IS the cation or anion are rare... [Pg.47]

The electric fields of both A and B fluctuate but always m a way that results m a weak attraction between them... [Pg.81]

Alkanes and cycloalkanes are nonpolar and insoluble m water The forces of attraction between alkane molecules are induced dipole/induced dipole attractive forces The boiling points of alkanes increase as the number of carbon atoms increases Branched alkanes have lower boiling points than their unbranched isomers There is a limit to how closely two molecules can approach each other which is given by the sum of their van der Waals radii... [Pg.98]

Induced dipole/induced dipole forces are the only intermolecular attractive forces available to nonpolar molecules such as alkanes In addition to these forces polar molecules engage m dipole-dipole and dipole/mduced dipole attractions The dipole-dipole attractive force is easiest to visualize and is illustrated m Figure 4 3 Two molecules of a polar substance experience a mutual attraction between the positively polarized region of one molecule and the negatively polarized region of the other As its name implies the dipole/induced dipole force combines features of both the induced dipole/mduced dipole and dipole-dipole attractive forces A polar region of one mole cule alters the electron distribution m a nonpolar region of another m a direction that produces an attractive force between them... [Pg.148]

Solvent Effects on the Rate of Substitution by the S l Mechanism Table 8 6 lists the relative rate of solvolysis of tert butyl chloride m several media m order of increasing dielectric constant (e) Dielectric constant is a measure of the ability of a material m this case the solvent to moderate the force of attraction between oppositely charged par tides compared with that of a standard The standard dielectric is a vacuum which is assigned a value e of exactly 1 The higher the dielectric constant e the better the medium is able to support separated positively and negatively charged species 8olvents... [Pg.345]

Many biological processes involve an associa tion between two species in a step prior to some subsequent transformation This asso ciation can take many forms It can be a weak associ ation of the attractive van der Waals type or a stronger interaction such as a hydrogen bond It can be an electrostatic attraction between a positively charged atom of one molecule and a negatively charged atom of another Covalent bond formation between two species of complementary chemical re activity represents an extreme kind of association It often occurs in biological processes in which aide hydes or ketones react with amines via imine inter mediates... [Pg.728]

Dielectric constant (Section 8 12) A measure of the ability of a matenal to disperse the force of attraction between oppo sitely charged particles The symbol for dielectnc constant IS e... [Pg.1281]

Dipole-dipole attraction (Section 2 17) A force of attraction between oppositely polanzed atoms... [Pg.1281]

The AMBER force field replaces the van der Waals by a 10-12 potential for pairs of atoms that can participate in hydrogen bonding (equation 12). The hydrogen bond potential does not contribute significantly to the hydrogen bonding attraction between two atoms rather, it is implemented to fine-tune the distances between these atoms. [Pg.26]

If two oppositely charged plates exist in a vacuum, there is a certain force of attraction between them, as stated by Coulomb s law ... [Pg.496]


See other pages where Attraction between is mentioned: [Pg.155]    [Pg.133]    [Pg.245]    [Pg.415]    [Pg.430]    [Pg.2364]    [Pg.2679]    [Pg.2680]    [Pg.25]    [Pg.28]    [Pg.35]    [Pg.44]    [Pg.57]    [Pg.11]    [Pg.26]    [Pg.62]    [Pg.116]    [Pg.142]    [Pg.148]    [Pg.11]    [Pg.125]   


SEARCH



Adsorbent-adsorbate, attraction between

Aqueous solutions attraction between

Attraction between Charged Groups (Salt Linkages)

Attraction between bubbles

Attraction between chains

Attraction between molecules filled and empty orbitals

Attraction between molecules summary

Attraction between particles

Attraction between polyions

Attraction between polyions counterion-mediated

Attraction, interactions between

Attractions between ions

Attractions between molecules

Attractive coupling (between

Attractive energy between fines

Attractive energy between fines particles

Attractive forces between chains

Attractive forces between molecules

Charge attraction between molecules

Charged spheres attractive force between

Electrostatic attraction between ions

Electrostatic attraction between molecule

Force of attraction between two ions

Forces of attraction between enzyme and

Hydrogen bond The attraction between

Ionic bond The attraction between oppositely

Ionic bond The attraction between oppositely charged ions

Ionic bonding The attraction between

Ionic bonding The attraction between oppositely charged ions

Protein Structure Is Determined by Attractions Between Neighboring Amino Acids

Sphere London attractive force between

The long-range attraction between neon atoms

© 2024 chempedia.info