Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersal medium

Brownian movement The rapid and random movement of particles of a colloidal sol, observed brightly lit against a dark ground. First observed with a pollen suspension. The Brownian movement is due to the impact on the dispersed particles of the molecules of the dispersion medium. As the particles increase in size, the probability of unequal bombardment from different sides decreases, and eventually collisions from all sides cancel out and the Brownian movement becomes imperceptible at a particle size of about 3-4/z. From the characteristics of the movement, Perrin calculated Avogadro s number L. [Pg.69]

In a suspension polymerisation monomer is suspended in water as 0.1—5-mm droplets, stabilised by protective coUoids or suspending agents. Polymerisation is initiated by a monomer-soluble initiator and takes place within the monomer droplets. The water serves as both the dispersion medium and a heat-transfer agent. Particle sise is controlled primarily by the rate of agitation and the concentration and type of suspending aids. The polymer is obtained as small beads about 0.1—5 mm in diameter, which are isolated by filtration or centrifugation. [Pg.169]

Atomization. A gas or Hquid may be dispersed into another Hquid by the action of shearing or turbulent impact forces that are present in the flow field. The steady-state drop si2e represents a balance between the fluid forces tending to dismpt the drop and the forces of interfacial tension tending to oppose distortion and breakup. When the flow field is laminar the abiHty to disperse is strongly affected by the ratio of viscosities of the two phases. Dispersion, in the sense of droplet formation, does not occur when the viscosity of the dispersed phase significantly exceeds that of the dispersing medium (13). [Pg.100]

This is because the effect of the dispersed soHd, rather than the dispersing medium, is usually more significant. However, the latter should not be ignored. Many industrial problems involving unacceptably high viscosities in dispersed systems are solved by substituting solvents of lower viscosity. [Pg.173]

Nomenclature. Colloidal systems necessarily consist of at least two phases, the coUoid and the continuous medium or environment in which it resides, and their properties gready depend on the composition and stmcture of each phase. Therefore, it is useful to classify coUoids according to their states of subdivision and agglomeration, and with respect to the dispersing medium. The possible classifications of colloidal systems are given in Table 2. The variety of systems represented in this table underscores the idea that the problems associated with coUoids are usuaUy interdisciplinary in nature and that a broad scientific base is required to understand them completely. [Pg.394]

Dispersing medium Dispersed (coUoidal) matter, T b Names... [Pg.394]

Referring to vinyl dispersions, having affinity for the dispersing medium. [Pg.135]

Monosized polystyrene particles in the size range of 2-10 /am have been obtained by dispersion polymerization of styrene in polar solvents such as ethyl alcohol or mixtures of alcohol with water in the presence of a suitable steric stabilizer (59-62). Dispersion polymerization may be looked upon as a special type of precipitation polymerization and was originally meant to be an alternative to emulsion polymerization. The components of a dispersion polymerization include monomers, initiator, steric stabilizer, and the dispersion medium... [Pg.15]

Figure 9 The schematical representation of dispersion polymerization process, (a) initially homogeneous dispersion medium (b) particle formation and stabilizer adsorption onto the nucleated macroradicals (c) capturing of radicals generated in the continuous medium by the forming particles and monomer diffusion to the forming particles (d) polymerization within the monomer swollen latex particles, (e) latex particle stabilized by steric stabilizer and graft copolymer molecules (f) list of symbols. Figure 9 The schematical representation of dispersion polymerization process, (a) initially homogeneous dispersion medium (b) particle formation and stabilizer adsorption onto the nucleated macroradicals (c) capturing of radicals generated in the continuous medium by the forming particles and monomer diffusion to the forming particles (d) polymerization within the monomer swollen latex particles, (e) latex particle stabilized by steric stabilizer and graft copolymer molecules (f) list of symbols.
We have also examined the effect of stabilizer (i.e., polyacrylic acid) on the dispersion polymerization of styrene (20 ml) initiated with AIBN (0.14 g) in an isopropanol (180 ml)-water (20 ml) medium [93]. The polymerizations were carried out at 75 C for 24 h, with 150 rpm stirring rate by changing the stabilizer concentration between 0.5-2.0 g/dL (dispersion medium). The electron micrographs of the final particles and the variation of the monomer conversion with the polymerization time at different stabilizer concentrations are given in Fig. 12. The average particle size decreased and the polymerization rate increased by the increasing PAAc concentra-... [Pg.205]

Uniform polymeric microspheres in the micron size range have been prepared in a wide variety of solvent combinations by dispersion polymerization. The polarity of the dispersion medium is one of the most important... [Pg.205]

Paine et al. [85] extensively studied the effect of solvent in the dispersion polymerization of styrene in the polar media. In their study, the dispersion polymerization of styrene was carried out by changing the dispersion medium. They used hydroxypropyl cellulose (HPC) as the stabilizer and its concentration was fixed to 1.5% within a series of -alcohols tried as the dispersion media. The particle size increased from only 2.0 /itm in methanol to about 8.3 /itm in pentanol, and then decreased back to 1 ixm in octadecanol. The particle size values plotted against the Hansen solubility parameters... [Pg.206]

Okubo et al. [87] used AIBN and poly(acrylic acid) (Mw = 2 X 10 ) as the initiator and the stabilizer, respectively, for the dispersion polymerization of styrene conducted within the ethyl alcohol/water medium. The ethyl alcohol-water volumetric ratio (ml ml) was changed between (100 0) and (60 40). The uniform particles were obtained in the range of 100 0 and 70 30 while the polydisperse particles were produced with 35 65 and especially 60 40 ethyl alcohol-water ratios. The average particle size decreased form 3.8 to 1.9 /xm by the increasing water content of the dispersion medium. [Pg.207]

Figure 14 The variation of average size of the polystyrene particles by the average solubility parameter of the homogeneous alcohol-water dispersion medium. (From Ref. 89. Reproduced with the permission of John Wiley Sons, Inc.)... Figure 14 The variation of average size of the polystyrene particles by the average solubility parameter of the homogeneous alcohol-water dispersion medium. (From Ref. 89. Reproduced with the permission of John Wiley Sons, Inc.)...
We have studied the effect of monomer concentration in the dispersion polymerization of styrene carried out in alcohol-water mixtures as the dispersion media. We used AIBN and poly(acrylic acid) as the initiator and the stabilizer, respectively, and we tried isopropanol, 1-butanol, and 2-butanol as the alcohols [89]. The largest average particle size values were obtained with the highest monomer-dispersion medium volumetric ratios in 1-butanol-water medium having the alcohol-water volumetric ratio of 90 10. The SEM micrographs of these particles are given in Fig. 15. As seen here, a certain size distribution by the formation of small particles, possibly with a secondary nucleation, was observed in the poly-... [Pg.208]


See other pages where Dispersal medium is mentioned: [Pg.150]    [Pg.156]    [Pg.188]    [Pg.211]    [Pg.289]    [Pg.290]    [Pg.354]    [Pg.383]    [Pg.429]    [Pg.1277]    [Pg.2666]    [Pg.27]    [Pg.4]    [Pg.343]    [Pg.394]    [Pg.394]    [Pg.396]    [Pg.397]    [Pg.456]    [Pg.254]    [Pg.154]    [Pg.154]    [Pg.16]    [Pg.68]    [Pg.205]    [Pg.206]    [Pg.207]    [Pg.207]    [Pg.207]    [Pg.208]    [Pg.208]    [Pg.209]    [Pg.209]   
See also in sourсe #XX -- [ Pg.505 , Pg.507 ]




SEARCH



Axial Dispersion and Mass Transfer Resistance in Porous Media

Disperse medium

Disperse medium

Disperse, medium phase

Disperse, medium systems

Dispersed Medium Model of Micellar Solution

Dispersed medium

Dispersed medium

Dispersed medium model

Dispersed systems continuous medium

Dispersing media

Dispersion medium

Dispersion medium

Dispersion medium, 477 table

Dispersion systems aqueous solution medium

Dispersive Media

Dynamic dispersion medium

Effects of Dispersion Media Gaseous Phase and Aqueous Suspensions

Hardening by solvent or dispersing medium removal

Heterogeneous polymerization dispersed media

Interaction with Dispersing Medium

Material dispersion uniform media

Mechanical dispersion porous media

Medium of dispersion

Modeling of Lossy and Dispersive Media with Higher Order FDTD Schemes

Nonlinear dispersive media

Paraffinic dispersion medium

Porous media dispersion

ROMP in Dispersed Media

Solvents dispersing medium

© 2024 chempedia.info