Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization 2, 3-dimethyl butadiene

Shima, Smid and Szwarc (56) studied the effect of the methyl substitution in the polymerization of butadiene, isoprene and dimethyl-butadiene. They showed that the electron-donating methyl group decreased the rate of polymerization catalysed by polystyrylsodium. This same electron releasing effect of the methyl is seen, since the 3.4-structure, not 1.2-structure, is produced predominantly from isoprene. This results from the anionic propagation mechanism of the alkali metal alkyl catalysed polymerization of dienes which produced 1.2 and 3.4-structures. [Pg.367]

Early studies on the homopolymerization of E-l,3-pentadiene yielded polymers with a high cis-1,4-content and an isotactic structure, whereas E-2-methyl-l,3-pentadiene resulted in a polymer with a mixed czs-1,4/transit-structure [487-492]. Investigations on the polymerization of E-1,3-pentadiene with the system NdN/TIBA/DEAC partially support these findings as a poly(l,3-pentadiene) with a cis- 1,4-threo-disyndiotactic structure was obtained [492]. A somewhat lower cis- 1,4-content of 70% was obtained when the polymerization of E-l,3-pentadiene was catalyzed by (CF3COO)2NdCl/TEA [493,494]. When 2,3-Dimethyl-1,3-butadiene is polymerized with the catalyst NdN/TIBA/EtAlC the resulting poly(2,3-dimethyl-butadiene) predominantly contains cis-1,4-units [495,496]. [Pg.86]

Poly(isobutylene) dicarboxylic acid was prepared by oxidation of the copolymer of isobutylene with a diene 53,54). The most efficient oxidizing agent was the system KMn04-periodic acid. Oxidation of a copolymer of isobutylene and 2,3-dimethyl-butadiene afforded a polymeric bis-ketone54). [Pg.91]

Pinacol was made by the Germans during the war in large quantities by the reduction of acetone with aluminium. It was converted by heating under pressure into dimethyl butadiene, CH2 = C.CH3.C.CH3. =CH2, which yielded a synthetic rubber when polymerized (49). [Pg.207]

During World War I, poly (dimethyl butadiene) was manufactured under the name methyl rubber as a substitute for the natural rubber that the Central Axis Powers lacked. H-type poly(dimethyl butadiene) was obtained by letting the monomer stand for three months in ventilated metal drums. The white, solid crystalline material thus obtained by popcorn polymerization becomes... [Pg.415]

As described in Section 1.1, the first commercial polymers, which were naturally occurring, were polyisoprenes (natural rubber and gutta-percha) and subsequently cellulose derivatives. From the early twentieth century, various totally synthetic polymers were introduced. Farbenfabrrken Bayer introduced bulk polymerized totally synthetic elastomers in 1910. Poly(dimethyl butadiene) synthetic rubber was produced commercially by Bayer in Leverkusen during World War I. The 1920s saw the commercial development of polystyrene (PS) and poly(vinyl chloride) (PVC). In 1934, the IG Farbenindustrie (a combine of Bayer, BASF, Floechst, and other firms) began to commercially manufacture butadiene-acrylonitrile copolymer (N BR) as an oil resistant rubber and in 1937 butadiene-styrene copolymer (SBR) intended for pneumatic tires. [Pg.18]

With the advent of World War I the situation in Germany, as far as the supply of natural rubber was concerned, became acute and renewed research efforts were made. Isoprene was expensive and, although quite a good rubber could be made from it by heat polymerization, yields were poor. Sodium-catalyzed polymerizations gave higher yields but inferior products. Since at that time butadiene was both very difiicult and expensive to prepare, dimethyl butadiene became the preferred monomer. In 1917 the Germans commenced the first substantial commercial production of a man-made rubber, from dimethyl butadiene. Two versions were made. Methyl Rubber W, by heat polymerization at about 70 C over a period of five months and... [Pg.4]

By the end of the 19th century isoprene had been converted to a rubber-like material by Tilden, Bouchardat and others. During the first decade of the 20th century other dienes such as butadiene and dimethyl butadiene had been polymerized. By 1909 F. Hofmann and his associates had filed patents on the heat polymerization of these monomers. [Pg.119]

The above-mentioned results have revealed that the structure of the monomer exerts significant influence on the microstructure of polymers. In the presence of rare earth catalysts butadiene forms a polymer with a cis-1,4 content greater than 98%, isoprene with 96% cis content, 2,3-dimethyl butadiene with mainly cis content, and polypentadiene with about 70% cis content while 2,4-hexadiene forms a trans 1,4-polymer. This may suggest that the steric interaction between the incoming monomer, the catalytic complex, and the last polymerized unit plays some role in determining the stereospedficity of polymerization. [Pg.408]

Acryhc stmctural adhesives have been modified by elastomers in order to obtain a phase-separated, toughened system. A significant contribution in this technology has been made in which acryhc adhesives were modified by the addition of chlorosulfonated polyethylene to obtain a phase-separated stmctural adhesive (11). Such adhesives also contain methyl methacrylate, glacial methacrylic acid, and cross-linkers such as ethylene glycol dimethacrylate [97-90-5]. The polymerization initiation system, which includes cumene hydroperoxide, N,1S7-dimethyl- -toluidine, and saccharin, can be apphed to the adherend surface as a primer, or it can be formulated as the second part of a two-part adhesive. Modification of cyanoacrylates using elastomers has also been attempted copolymers of acrylonitrile, butadiene, and styrene ethylene copolymers with methylacrylate or copolymers of methacrylates with butadiene and styrene have been used. However, because of the extreme reactivity of the monomer, modification of cyanoacrylate adhesives is very difficult and material purity is essential in order to be able to modify the cyanoacrylate without causing premature reaction. [Pg.233]

The use of alkaU metals for anionic polymerization of diene monomers is primarily of historical interest. A patent disclosure issued in 1911 (16) detailed the use of metallic sodium to polymerize isoprene and other dienes. Independentiy and simultaneously, the use of sodium metal to polymerize butadiene, isoprene, and 2,3-dimethyl-l,3-butadiene was described (17). Interest in alkaU metal-initiated polymerization of 1,3-dienes culminated in the discovery (18) at Firestone Tire and Rubber Co. that polymerization of neat isoprene with lithium dispersion produced high i7j -l,4-polyisoprene, similar in stmcture and properties to Hevea natural mbber (see ELASTOLffiRS,SYNTHETic-POLYisoPRENE Rubber, natural). [Pg.236]

Economic considerations in the 1990s favor recovering butadiene from by-products in the manufacture of ethylene. Butadiene is a by-product in the C4 streams from the cracking process. Depending on the feedstocks used in the production of ethylene, the yield of butadiene varies. Eor use in polymerization, the butadiene must be purified to 994-%. Cmde butadiene is separated from C and C components by distillation. Separation of butadiene from other C constituents is accomplished by salt complexing/solvent extraction. Among the solvents used commercially are acetonitrile, dimethyl acetamide, dimethylform amide, and /V-methylpyrrolidinone (13). Based on the available cmde C streams, the worldwide forecasted production is as follows 1995, 6,712,000 1996, 6,939,000 1997, 7,166,000 and 1998, 7,483,000 metric tons (14). As of January 1996, the 1995 actual total was 6,637,000 t. [Pg.494]

Dimethyl peroxide Diethyl peroxide Di-t-butyl-di-peroxyphthalate Difuroyl peroxide Dibenzoyl peroxide Dimeric ethylidene peroxide Dimeric acetone peroxide Dimeric cyclohexanone peroxide Diozonide of phorone Dimethyl ketone peroxide Ethyl hydroperoxide Ethylene ozonide Hydroxymethyl methyl peroxide Hydroxymethyl hydroperoxide 1-Hydroxyethyl ethyl peroxide 1 -Hydroperoxy-1 -acetoxycyclodecan-6-one Isopropyl percarbonate Isopropyl hydroperoxide Methyl ethyl ketone peroxide Methyl hydroperoxide Methyl ethyl peroxide Monoperoxy succinic acid Nonanoyl peroxide (75% hydrocarbon solution) 1-Naphthoyl peroxide Oxalic acid ester of t-butyl hydroperoxide Ozonide of maleic anhydride Phenylhydrazone hydroperoxide Polymeric butadiene peroxide Polymeric isoprene peroxide Polymeric dimethylbutadiene peroxide Polymeric peroxides of methacrylic acid esters and styrene... [Pg.163]

The use of palladium(II) sulfoxide complexes as catalyst precursors for polymerization has met with mixed results thus a report of a palla-dium(II) chloride-dimethyl sulfoxide system as a catalyst precursor for phenylacetylene polymerization suggests similar results to those obtained using tin chloride as catalyst precursor (421). However, addition of dimethyl sulfoxide to solutions of [NH fPdCh] decreases the activity as a catalyst precursor for the polymerization of butadiene (100). Dimethyl sulfoxide complexes of iron have also been mentioned as catalyst precursors for styrene polymerization (141). [Pg.160]

Penultimate effects have been observed for many comonomer pairs. Among these are the radical copolymerizations of styrene-fumaronitrile, styrene-diethyl fumarate, ethyl methacrylate-styrene, methyl methacrylate l-vinylpyridine, methyl acrylate-1,3-butadiene, methyl methacrylate-methyl acrylate, styrene-dimethyl itaconate, hexafluoroisobutylene-vinyl acetate, 2,4-dicyano-l-butene-isoprene, and other comonomer pairs [Barb, 1953 Brown and Fujimori, 1987 Buback et al., 2001 Burke et al., 1994a,b, 1995 Cowie et al., 1990 Davis et al., 1990 Fordyce and Ham, 1951 Fukuda et al., 2002 Guyot and Guillot, 1967 Hecht and Ojha, 1969 Hill et al., 1982, 1985 Ma et al., 2001 Motoc et al., 1978 Natansohn et al., 1978 Prementine and Tirrell, 1987 Rounsefell and Pittman, 1979 Van Der Meer et al., 1979 Wu et al., 1990 Yee et al., 2001 Zetterlund et al., 2002]. Although ionic copolymerizations have not been as extensively studied, penultimate effects have been found in some cases. Thus in the anionic polymerization of styrene t-vinylpyri-dine, 4-vinylpyridine adds faster to chains ending in 4-vinylpyridine if the penultimate unit is styrene [Lee et al., 1963]. [Pg.515]

More recently ERUSSALIMSKY et al (15) investigated the polymerization of 2,3-dimethylbutadiene induced by oligo-2,3 dimethyl-butadienyllithium/TMEDA. Contrary to butadiene and isoprene, catalytic amounts of TMEDA decrease the propagation rate of dime- thylbutadiene. [Pg.464]

Organometallic usage is shown in the preparation of titanium- or vanadium-containing catalysts for the polymerization of styrene or butadiene by the reaction of dimethyl sulfate with the metal chloride (145). Free-radical activity is proposed for the quaternary product from dimethylaniline and dimethyl sulfate and for the product from l,l,4,4-tetramethyl-2-tetrazene and dimethyl sulfate (146,147). [Pg.203]

Phenanthroline in the presence of heavy metals acts as an activator of the polymerization of vinyl compounds558,559 and other olefins.560-564 It also assists the dimerization of olefins in the presence of titanium catalysts.565,566 It enhances the metal catalyzed oxidation of ascorbic acid567 and dimethyl sulfoxide.568 On the other hand, on its own it can inhibit several polymerization processes.545,569 It also stabilizes butadiene and isoprene and prevents their dimerization.570 It prevents peroxide formation in ether,571 inhibits the vinylation of alcohol572 and stabilizes cumyl chloride.573 It accelerates the vulcanization of diene rubbers574 and copolymers.575 1,10-Phenanthroline catalyzes the autooxidation of linoleic and ascorbic acids in the absence of metals.567... [Pg.67]

Polymere des 2.3-Dimethyl-1.3-butadien zu, das in Aliphaten 1.4-trans-Polymere liefert 46>. [Pg.120]

A study on the homo- and copolymerization of a variety of dienes such as 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, E-l,3-pentadiene, E-l,3-hexadiene, E-l,3-heptadiene, E-l,3-octadiene, E,E-2,4-hexadiene, E-2-methyl-l,3-pentadiene, 1,3-cyclohexadiene mainly focused on mechanistic aspects [139]. It was shown that 1,4-disubstituted butadienes yield frans-1,4-polymers, whereas 2,3-disubstituted butadienes mainly resulted in cis- 1,4-polymers. Polymers obtained by the polymerization of 1,3-disubstituted butadienes showed a mixed trans-1,4/cis-1,4 structure (60/40). The microstructures of the investigated polymers are summarized in Table 26. [Pg.87]

Wooding and Higginson (94) have polymerized acrylonitrile, methyl methacrylate, styrene and butadiene with a wide variety of alkoxides and other basic materials. The ease of polymerization of monomer is in the above mentioned order. A further study of the polymerization of acrylonitrile by Zilka, Feit, and Frankel using alkoxides has also been reported (104). These workers also studied the polymerization of acrylonitrile and methacrylonitrile in dimethyl-formamide by aqueous quaternary ammonium hydroxides (106). [Pg.130]

Many solvents form dangerous levels of peroxides during storage e.g., dipropyl ether, divinylacetylene, vinylidene chloride, potassium amide, sodium amide. Other compounds form peroxides in storage but concentration is required to reach dangerous levels e.g., diethyl ether, ethyl vinyl ether, tetrahydrofuran, p-dioxane, l,l-diethox) eth-ane, ethylene glycol dimethyl ether, propyne, butadiene, dicyclopentadiene, cyclohexene, tetrahydronaphthalenes, deca-hydrona-phthalenes. Some monomeric materials can form peroxides that catalyze hazardous polymerization reactions e.g., acr) lic acid, acr)Ionitrile, butadiene, 2-chlorobutadiene, chlorotrifluoroethylene, methyl methacrylate, styrene, tetrafluoroethylene,... [Pg.1086]


See other pages where Polymerization 2, 3-dimethyl butadiene is mentioned: [Pg.873]    [Pg.245]    [Pg.409]    [Pg.550]    [Pg.54]    [Pg.42]    [Pg.420]    [Pg.35]    [Pg.427]    [Pg.132]    [Pg.119]    [Pg.395]    [Pg.408]    [Pg.408]    [Pg.103]    [Pg.631]    [Pg.215]    [Pg.721]    [Pg.269]    [Pg.868]    [Pg.686]    [Pg.1529]    [Pg.116]    [Pg.458]    [Pg.1529]   
See also in sourсe #XX -- [ Pg.408 ]




SEARCH



Butadiene, polymerized

© 2024 chempedia.info