Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion active metals

Corrosion inhibitors are used to protect both the container and the metal substrate being stripped. Acid activated removers use inhibitors to block corrosion on active metals. Typical inhibitors are propylene oxide [75-56-9], butylene oxide [9106-88-7], triethylammonium phosphates, and sodium ben2oate [532-32-1] (see Corrosion and corrosion control). [Pg.551]

Metal Finishing and Corrosion Control. The exceptional corrosion protection provided by electroplated chromium and the protective film created by applying chromium surface conversion techniques to many active metals, has made chromium compounds valuable to the metal finishing industry. Cr(VI) compounds have dominated the formulas employed for electroplating (qv) and surface conversion, but the use of Cr(III) compounds is growing in both areas because of the health and safety problems associated with hexavalent chromium and the low toxicity of trivalent chromium (see... [Pg.142]

Chromium Surfa.ce Conversion. Converting the surface of an active metal by incorporating a barrier film of complex chromium compounds protects the metal from corrosion, provides an excellent base for subsequent painting, provides a chemical poHsh, and/or colors the metal. [Pg.143]

Galvanic Corrosion Galvanic corrosion is the corrosion rate above normal that is associated with the flow of current to a less active metal (cathode) in contact with a more active metal (anode) in the same environment. Tables 28-1 7 and 28-li show the galvanic series of various metals. It should be used with caution, since exceptions to... [Pg.2418]

Galvanic corrosion may also occur by transport of relatively noble metals, either as particulate or as ions, to the surface of an active metal. For example, ions of copper, perhaps resulting from corrosion or erosion-corrosion at an upstream site, may be carried by cooling water to the surfaces of aluminum, steel, or even stainless steel components. If the ions are reduced and deposit on the component surfaces, localized galvanic corrosion may result. [Pg.358]

Most galvanic corrosion processes are sensitive to the relatively exposed areas of the noble (cathode) and active (anode) metals. The corrosion rate of the active metal is proportional to the area of exposed noble metal divided by the area of exposed active metal. A favorable area ratio (large anode, small cathode) can permit the coupling of dissimilar metals. An unfavorable area ratio (large cathode, small anode) of the same two metals in the same environment can be costly. [Pg.361]

Corrosion of the noble metal will be slight or nonexistent, even though it would corrode in the given environment if it were not coupled to the active metal. [Pg.363]

In general, corrosion of the active metal will be most severe at its junction with the noble metal (Fig. 16.2) and will decrease with increased distance from the junction. [Pg.363]

When possible, avoid coupling materials having widely dissimilar galvanic potentials. If this cannot he avoided, make use of favorable area ratios by giving the active metal a large exposed area relative to the noble metal. For example, copper or copper-based alloy tubes may be joined to a steel tube sheet. Because of the favorable area ratio in this case, a relatively inexpensive steel tube sheet may be intentionally substituted for a bronze or a brass tube sheet if thickness specifications allow for a small amount of galvanic corrosion of the steel. [Pg.364]

An interesting effect is sometimes observed when cupronickels are galvanically coupled to less noble materials. The corrosion rate of the active metal is increased and the corrosion rate of the cupronickel is diminished, as expected. The diminished corrosion rate of the cupronickel can, however, diminish its fouling resistance since reduced production of copper ions lowers toxicity to copper-ion-sensitive organisms. [Pg.366]

There are no films or protective surface films on active metals, e.g., mild steel in acid or saline solutions. Passive metals are protected by dense, less readily soluble surface films (see Section 2.3.1.2). These include, for example, high-alloy Cr steels and NiCr alloys as well as A1 and Ti in neutral solutions. Selective corrosion of alloys is largely a result of local concentration differences of alloying elements which are important for corrosion resistance e.g., Cr [4],... [Pg.32]

If the amount of metal removal by erosion is significant the surface will probably be continually active. Metal loss will be the additive effect of erosion and active corrosion. Sometimes the erosion rate is higher than that of active corrosion. The material selection judgment can then disregard coirosion and proceed on the basis of erosion resistance provided the corrosion rates of aetive surfaces of the alloys considered are not much different. As an example of magnitudes, a good high-chromium iron may lose metal from erosion only a tenth as fast as do the usual stainless steels. [Pg.270]

The basic mechanism of passivation is easy to understand. When the metal atoms of a fresh metal surface are oxidised (under a suitable driving force) two alternative processes occur. They may enter the solution phase as solvated metal ions, passing across the electrical double layer, or they may remain on the surface to form a new solid phase, the passivating film. The former case is active corrosion, with metal ions passing freely into solution via adsorbed intermediates. In many real corrosion cases, the metal ions, despite dissolving, are in fact not very soluble, or are not transported away from the vicinity of the surface very quickly, and may consequently still... [Pg.126]

Soil is distinguished by the complex nature of its composition and of its interaction with other environmental factors. No two soils are exactly alike, and extremes of structure, composition and corrosive activity are found in different soils. Climatic factors of rainfall, temperature, air movement and sunlight can cause marked alterations in soil properties which relate directly to the rates at which corrosion will take place on metals buried in these soils. [Pg.377]

No corrosion occurs in a completely dry environment. In soil, water is needed for ionisation of the oxidised state at the metal surface. Water is also needed for ionisation of soil electrolytes, thus completing the circuit for flow of a current maintaining corrosive activity. Apart from its participation in the fundamental corrosion process, water markedly influences most of the other factors relating to corrosion in soils. Its role in weathering and soil genesis has already been mentioned. [Pg.381]

Generally, the most common cations in the soil solution are potassium, sodium, magnesium and calcium. Alkali soils are high in sodium and potassium, while calcareous soils contain predominantly magnesium and calcium. Salts of all four of these elements tend to accelerate metallic corrosion by the mechanisms mentioned. The alkaline earth elements, calcium and magnesium, however, tend to form insoluble oxides and carbonates in nonacid conditions. These insoluble precipitates may result in a protective layer on the metal surface and reduced corrosive activity. [Pg.383]

Access of air and water will also affect the corrosion rate. Metal inserts in corrosive plastics are most actively attacked at the plastic/metal/air interfaces with certain metals, notably aluminium titaniumand stainless steel, crevice effects (oxygen shielding and entrapment of water) frequently accelerate attack. Acceleration of corrosion by bimetallic couples between carbon-fibre-reinforced plastics and metals presents a problem in the use of these composites. [Pg.955]

In disinfection of instruments, the chemicals used must not adversely affect the instruments, e.g. cause corrosion of metals, affect clarity or integrity of lenses, or change texture of synthetic polymers. Many materials such as fabrics, rubber, plastics are capable of adsorbing certain disinfectants, e.g. quaternary ammonium compounds (QACs), are adsorbed by fabrics, while phenolics are adsorbed by rubber, the consequence ofthis being a reduction in concentration of active compound. A disinfectant can only exert its effect ifit is in contact with the item being treated. Therefore access to all parts of an instrument or piece of equipment is essential. For small items, total immersion in the disinfectant must also be ensured. [Pg.207]

Electrochemical and nonelectrochemical ways to protect metals against corrosion can be distinguished. The nonelectrochemical ways include dense protective films that isolate the metal against effects of the medium and may be paint, polymer, bitumen, enamel, and the like. It is a general shortcoming of these coatings that when they are damaged mechanically, they lose their protective action, and local corrosion activity arises. [Pg.384]

The corrosion of metal surfaces and the precipitation of a metal sulfide by an aqueous acid solution can be prevented by an aldol-amine adduct. Aldol (from acetaldehyde) CH3CH(OH)CH2CHO has been utilized as a H2S scavenger that prevents the precipitation of metal sulfides from aqueous acid solutions. However, when the aldol or an aqueous solution of the aldol is stored, the solution separates quickly into two layers, with all of the aldol concentrated in the bottom layer. The bottom layer is not redispersible in the top layer or in water or acid. In addition, the aldol in the bottom layer has very little activity as a sulfide scavenger. Thus the use of aldol as a H2S scavenger in aqueous acid solutions can result in unsatisfactory results [245,247]. However, the aldol can be reacted with an amine, such as monoethanoleamine (=aminoethanol), to form an aldol-amine adduct to overcome these difficulties. The amine utilized to prepare the aldol-amine adduct must be a primary amine. The aldol-amine adduct preferentially reacts with sulfide ions when they are dissolved in the... [Pg.100]

The corrosion of metals and alloys generally starts at the surface with the formation of an outer layer, which may develop into a crust of corrosion products. If a crust is formed, it generally has a layered structure comprising two or more compounds (1) an outer, rather stable, mineralized layer that often covers entirely the surface of the objects, and underneath, (2) a less mineralized, unstable, and chemically active layer. Some corrosion layers may also bind ugly and disfiguring earthy accretions. [Pg.218]


See other pages where Corrosion active metals is mentioned: [Pg.129]    [Pg.129]    [Pg.231]    [Pg.12]    [Pg.151]    [Pg.128]    [Pg.151]    [Pg.2418]    [Pg.355]    [Pg.365]    [Pg.53]    [Pg.53]    [Pg.55]    [Pg.1297]    [Pg.118]    [Pg.387]    [Pg.391]    [Pg.472]    [Pg.1148]    [Pg.1155]    [Pg.205]    [Pg.608]    [Pg.25]    [Pg.1407]    [Pg.55]    [Pg.216]    [Pg.305]    [Pg.410]    [Pg.4]    [Pg.78]   
See also in sourсe #XX -- [ Pg.366 ]




SEARCH



Active corrosion

Corrosion metals

Corrosion, metallic

© 2024 chempedia.info