Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper-based alloys

Protecting the Sufaces of Copper and Copper-Base Alloys, International Copper Research Association, New York. [Pg.174]

Economic Aspects. Lithium metal is available commercially in ingots, special shapes, shot, and dispersions. Ingots are sold in 0.11-, 0.23-, 0.45-, and 0.91-kg sizes. Special shapes include foil, wire, and rod. Lithium is available in hermetically sealed copper cartridges and in sealed copper tubes for use in treating molten copper and copper-base alloys. Shot is sold in 1.19—4.76 mm (16—4 mesh) sizes. Lithium dispersions (30% in mineral oil) of 10—50-p.m particle size are used primarily in organic chemical reactions. Dispersions in other solvents and of other size fractions can be suppHed. [Pg.224]

Copper Development Association P.O. Box 1840 Greenwich, Conn. 06836 Standards for wrought and cast copper and copper alloy products a standards handbook is pubUshed with tolerances, alloy data, terminology, engineering data, processing characteristics, sources and specifications cross-indexes for six coppers and 87 copper-based alloys that are recognized as standards. [Pg.25]

The process is used for ferrous P/M stmctural parts that have densities of at least 7.4 g/cm and mechanical properties superior than those of parts that have been only compacted and sintered. Depending on the appHcation, the porous matrix may be infiltrated only partially or almost completely. Copper-base alloy infiltrants have been developed to minimise erosion of the iron matrix. [Pg.187]

Corrosion. Copper-base alloys are seriously corroded by sodium thiosulfate (22) and ammonium thiosulfate [7783-18-8] (23). Corrosion rates exceed 10 kg/(m yr) at 100°C. High siUcon cast iron has reasonable corrosion resistance to thiosulfates, with a corrosion rate <4.4 kg/(m yr)) at 100°C. The preferred material of constmction for pumps, piping, reactors, and storage tanks is austenitic stainless steels such as 304, 316, or Alloy 20. The corrosion rate for stainless steels is <440 g/(m yr) at 100°C (see also Corrosion and corrosion control). [Pg.27]

Molten tin wets and adheres readily to clean iron, steel, copper, and copper-base alloys, and the coating is bright. It provides protection against oxidation of the coated metal and aids in subsequent fabrication because it is ductile and solderable. Tin coatings can be appHed to most metals by electro deposition (see Electroplating). [Pg.57]

Tin is used in various industrial appHcations as cast and wrought forms obtained by rolling, drawing, extmsion, atomizing, and casting tinplate, ie, low carbon steel sheet or strip roUed to 0.15—0.25 mm thick and thinly coated with pure tin tin coatings and tin alloy coatings appHed to fabricated articles (as opposed to sheet or strip) of steel, cast iron, copper, copper-base alloys, and aluminum tin alloys and tin compounds. [Pg.60]

Antimony may be added to copper-base alloys such as naval brass. Admiralty Metal, and leaded Muntz metal in amounts of 0.02—0.10% to prevent dezincification. Additions of antimony to ductile iron in an amount of 50 ppm, preferably with some cerium, can make the graphite fliUy nodular to the center of thick castings and when added to gray cast iron in the amount of 0.05%, antimony acts as a powerflil carbide stabilizer with an improvement in both the wear resistance and thermal cycling properties (26) (see Carbides). [Pg.198]

Electrical conductivity is comparatively easy to measure, whereas thermal conductivity is not. Electrical conductivity values for the important cast alloys are Hsted in Table 2. Eigure 1 schematically shows the electrical conductivity of cast copper-base alloys compared with various other cast metals and alloys. The equation Y = 4.184 + 3.93a gives an approximation of thermal conductivity in relation to electrical conductivity, where Tis in W/(m-K) at 20°C and X is the % lACS at 20°C. [Pg.241]

Copper and copper-base alloy Cn, Si B9S C6.5500, C66100 Soft 52.0 15.0 43 325... [Pg.992]

The letter a indicates alloys wliich are not recommended for welding and wliich, if welded, must be individually qualified. The letter b indicates copper-base alloys wliich must be individually qualified. [Pg.994]

Essentially all industrial metals are susceptible to SCC in some specific environment. Of the metals commonly used in cooling water systems, copper-based alloys and stainless steels are most frequently affected. Common specific corrodents causing SCC in these and other heat exchanger metals are listed in Table 9.1. [Pg.205]

Copper-based alloys Ammonia (vapors and solutions) Amines Sulfur dioxide Nitrates, nitrites... [Pg.206]

Most metals are subject to erosion-corrosion in some specific environment. Soft metals, such as copper and some copper-base alloys, are especially susceptible. Erosion-corrosion is accelerated by, and frequently involves, a dilute dispersion of hard particles or gas bubbles entrained in the fluid. [Pg.240]

Use of inhibitors. Because corrosion is such a vital aspect of the erosion-corrosion process, inhibitors that will reduce corrosion under conditions of high fluid velocity have been a cost-effective method of dealing with erosion-corrosion. For example, injection of ferrous sulfate either intermittently or continuously has been successful in inhibiting erosion-corrosion, especially with copper-base alloys. [Pg.250]

When possible, avoid coupling materials having widely dissimilar galvanic potentials. If this cannot he avoided, make use of favorable area ratios by giving the active metal a large exposed area relative to the noble metal. For example, copper or copper-based alloy tubes may be joined to a steel tube sheet. Because of the favorable area ratio in this case, a relatively inexpensive steel tube sheet may be intentionally substituted for a bronze or a brass tube sheet if thickness specifications allow for a small amount of galvanic corrosion of the steel. [Pg.364]

Similarly, graphitically corroded cast iron (see Chap. 17) can assume a potential approximately equivalent to graphite, thus inducing galvanic corrosion of components of steel, uncorroded cast iron, and copper-based alloys. Hence, special precautions must be exercised when dealing with graphitically corroded pump impellers and pump casings (see Cautions in Chap. 17). [Pg.366]

Neglecting trace chemicals. Watch for ppm levels of chloride with stainless steels or ppm levels of ammonia with copper-base alloys for example. [Pg.271]

If conditions are such as to require a duplex tube, it is quite likely that a plain end detail for the tube will not be satisfactory. Grooved or serrated joints are recommended for this type of tube, and the ends should be flared or beaded. Table 10-8 gives recommended flare or bell radii for copper-based alloys. Also see Table 10-8A. In service where galvanic corrosion or other corrosive action may take place on the outside material used in the tube, a ferrule of inside tube... [Pg.34]

In contrast, the selective dissolution or leaching-out by corrosion of one component of a single-phase alloy is of considerable practical importance. The most common example of this phenomenon, which is also referred to as parting , is dezincification, i.e. the selective removal of zinc from brass (see Section 1.6). Similar phenomena are observed in other binary copper-base alloys, notably Cu-Al, as well as in other alloy systems. [Pg.48]

Metals which owe their good corrosion resistance to the presence of thin, passive or protective surface films may be susceptible to pitting attack when the surface film breaks down locally and does not reform. Thus stainless steels, mild steels, aluminium alloys, and nickel and copper-base alloys (as well as many other less common alloys) may all be susceptible to pitting attack under certain environmental conditions, and pitting corrosion provides an excellent example of the way in which crystal defects of various kinds can affect the integrity of surface films and hence corrosion behaviour. [Pg.49]

The effect of alloying additions on the marine corrosion properties of non-ferrous metals can be very significant, and for copper-based alloys has been comprehensively reviewed by Bradley... [Pg.372]

Many of the alloys of copper are more resistant to corrosion than is copper itself, owing to the incorporation either of relatively corrosion-resistant metals such as nickel or tin, or of metals such as aluminium or beryllium that would be expected to assist in the formation of protective oxide films. Several of the copper alloys are liable to undergo a selective type of corrosion in certain circumstances, the most notable example being the dezincification of brasses. Some alloys again are liable to suffer stress corrosion by the combined effects of internal or applied stresses and the corrosive effects of certain specific environments. The most widely known example of this is the season cracking of brasses. In general brasses are the least corrosion-resistant of the commonly used copper-base alloys. [Pg.685]

Titanium in contact with other metals In most environments the potentials of passive titanium. Monel and stainless steel, are similar, so that galvanic effects are not likely to occur when these metals are connected. On the other hand, titanium usually functions as an efficient cathode, and thus while contact with dissimilar metals is not likely to lead to any significant attack upon titanium, there may well be adverse galvanic effects upon the other metal. The extent and degree of such galvanic attack will depend upon the relative areas of the titanium and the other metal where the area of the second metal is small in relation to that of titanium severe corrosion of the former will occur, while less corrosion will be evident where the proportions are reversedMetals such as stainless steel, which, like titanium, polarise easily, are much less affected in these circumstances than copper-base alloys and mild steel. [Pg.873]


See other pages where Copper-based alloys is mentioned: [Pg.252]    [Pg.496]    [Pg.187]    [Pg.46]    [Pg.244]    [Pg.386]    [Pg.413]    [Pg.227]    [Pg.245]    [Pg.247]    [Pg.247]    [Pg.250]    [Pg.946]    [Pg.204]    [Pg.246]    [Pg.394]    [Pg.395]    [Pg.533]    [Pg.83]    [Pg.200]    [Pg.871]    [Pg.51]    [Pg.790]    [Pg.959]    [Pg.1088]    [Pg.1156]   
See also in sourсe #XX -- [ Pg.6 , Pg.12 , Pg.30 , Pg.31 , Pg.356 , Pg.361 ]

See also in sourсe #XX -- [ Pg.69 , Pg.98 ]




SEARCH



Alloys based

Copper alloys

Copper-base alloys

© 2024 chempedia.info