Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compounds water present

We may now understand the nature of the change which occurs when an anhydrous salt, say copper sulphate, is shaken with a wet organic solvent, such as benzene, at about 25°. The water will first combine to form the monohydrate in accordance with equation (i), and, provided suflScient anhydrous copper sulphate is employed, the effective concentration of water in the solvent is reduced to a value equivalent to about 1 mm. of ordinary water vapour. The complete removal of water is impossible indeed, the equilibrium vapour pressures of the least hydrated tem may be taken as a rough measure of the relative efficiencies of such drying agents. If the water present is more than sufficient to convert the anhydrous copper sulphate into the monohydrate, then reaction (i) will be followed by reaction (ii), i.e., the trihydrate will be formed the water vapour then remaining will be equivalent to about 6 mm. of ordinary water vapour. Thus the monohydrate is far less effective than the anhydrous compound for the removal of water. [Pg.41]

Step 3. The neutral components. The ethereal solution (E remaining after the acid extraction of Step 2 should contain only the neutral compounds of Solubility Groups V, VI and VII (see Table XI,5). Dry it with a little anhydrous magnesium sulphate, and distil off the ether. If a residue is obtained, neutral compounds are present in the mixture. Test a portion of this with respect to its solubility in concentrated sulphuric acid if it dissolves in the acid, pour the solution slowly and cautiously into ice water and note whether any compound is recovered. Examine the main residue for homogeneity and if it is a mixture devise procedures, based for example upon differences in volatility, solubility in inert solvents, reaction with hydrolytic and other reagents, to separate the components. [Pg.1096]

Concentration in a water-pump vacuum gave the chloroallene, n 1.5980, in more than 90% yield. The NMR spectrum showed that no starting compound was present and the purity was satisfactory. Attempts to distil the allene led to extensive polymerization. [Pg.178]

The reaction with sodium sulfite or bisulfite (5,11) to yield sodium-P-sulfopropionamide [19298-89-6] (C3H7N04S-Na) is very useful since it can be used as a scavenger for acrylamide monomer. The reaction proceeds very rapidly even at room temperature, and the product has low toxicity. Reactions with phosphines and phosphine oxides have been studied (12), and the products are potentially useful because of thek fire retardant properties. Reactions with sulfide and dithiocarbamates proceed readily but have no appHcations (5). However, the reaction with mercaptide ions has been used for analytical purposes (13)). Water reacts with the amide group (5) to form hydrolysis products, and other hydroxy compounds, such as alcohols and phenols, react readily to form ether compounds. Primary aUphatic alcohols are the most reactive and the reactions are compHcated by partial hydrolysis of the amide groups by any water present. [Pg.133]

There are two reasons why the concentration of quaternaries is beheved to remain at a low level in sewage treatment systems. First, quaternaries appear to bind anionic compounds and thus are effectively removed from wastewater by producing stable, lower toxicity compounds (205). Anionic compounds are present in sewer systems at significantly higher concentrations than are cations (202). Second, the nature of how most quaternaries are used ensures that their concentrations in wastewater treatment systems are always relatively low but steady. Consumer products such as fabric softeners, hair conditioners, and disinfectants contain only a small amount of quaternary compounds. This material is then diluted with large volumes of water during use. [Pg.379]

For the most part boric acid esters are quantitated by hydrolysis in hot water followed by determination of the amount of boron by the mannitol titration (see Boron compounds, boric oxide, boric acid and borates). Separation of and measuring mixtures of borate esters can be difficult. Any water present causes hydrolysis and in mixtures, as a result of transesterification, it is possible to have a number of borate esters present. For some borate esters, such as triethanolamine borate, hydrolysis is sufftciendy slow that quantitation by hydrolysis and titration cannot be done. In these cases, a sodium carbonate fusion is necessary. [Pg.216]

Sulfur oxides (SO,) are compounds of sulfur and oxygen molecules. Sulfur dioxide (SO2) is the predominant form found in the lower atmosphere. It is a colorless gas that can be detected by taste and smell in the range of 1, (X)0 to 3,000 uglm. At concentrations of 10,000 uglm , it has a pungent, unpleasant odor. Sulfur dioxide dissolves readily in water present in the atmosphere to form sulfurous acid (H SOj). About 30% of the sulfur dioxide in the atmosphere is converted to sulfate aerosol (acid aerosol), which is removed through wet or dry deposition processes. Sulfur trioxide (SO3), another oxide of sulfur, is either emitted directly into the atmosphere or produced from sulfur dioxide and is readily converted to sulfuric acid (H2SO4). [Pg.38]

General Incineration (oxidation) is the best-known method for the removal of gaseous industrial waste. Combustible compounds containing carbon, hydrogen, and oxygen are converted to carbon dioxide and water by the overall exothermic reactions [Eq. (13.72)]. When chlorinated or sulfur-containing compounds are present in the effluent, the products of combustion include HCl/CE or S02/S03. ... [Pg.1255]

Even polyalkoxy-s-triazines are quite prone to nucleophilic substitution. For example, 2,4,6-trimethoxy-s-triazine (320) is rapidly hydrolyzed (20°, dilute aqueous alkali) to the anion of 4,6-dimethoxy-s-triazin-2(l )-one (331). This reaction is undoubtedly an /S jvr-4r2 reaction and not an aliphatic dealkylation. The latter type occurs with anilines at much higher temperatures (150-200°) and with chloride ion in the reaction of non-basified alcohols with cyanuric chloride at reflux temperatures. The reported dealkylation with methoxide has been shown to be hydrolysis by traces of water present. Several analogous dealkylations by alkoxide ion, reported without evidence for the formation of the dialkyl ether, are all associated with the high reactivity of the alkoxy compounds which ai e, in fact, hydrolyzed by usually tolerable traces of water. Brown ... [Pg.304]

Alumina is the most frequently employed adsorbant. Its activity (i.e., the extent to which it adsorbs polar compounds) is largely a function of the amount of water present. Alumina of Activity I is prepared by heating the material in an oven to 200-230° and allowing it to cool in a desiccator. Addition of water to the extent of 3%, 6%, 10%, or 15% to the dry material gives alumina of Activity II, III, IV, and V, respectively. [Pg.186]

For example, for steam (saturated vapor, no liquid) distillation with one organic compound (liquid), there are two phases, two components, and two degrees of freedom. These degrees of freedom that can be set for the system could be (1) temperature and (2) pressure or (1) temperature and/or (2) concentration of the s) stem components, or either (1) pressure and (2) concentration. In steam distillation steam may be developed from water present, so there would be both a liquid water and a vapor phase water (steam) present. For such a case, the degrees of freedom are F = 2 + 2- 3 = l. [Pg.57]

E.9 Epsom salts consist of magnesium sulfate heptahydrate. Write its formula, (a) How many atoms of oxygen are in 5.15 g of Epsom salts (b) How many formula units of the compound are present in 5.15 g (c) How many moles of water molecules are in 5.15 g of Epsom salts ... [Pg.69]

A drop of water contains an unimaginable number of molecules, as our molecular inset shows. Water is essential to life as we know it. The simple yet unusual fact that solid water (ice) floats atop liquid water allows life to exist on our planet. Just as important is the fact that water dissolves an immense range of chemical compounds Water is the solvent of life. In fact, water is so important to our perspective of life that the search for water is a key feature of our quest to discover life in other quarters of the galaxy. The inset photo of the surface of Mars, for example, shows no sign of water at present, but some erosional features appear to have been caused by flowing water in the past. [Pg.5]

The oxidation behavior of 3-oxa-chromanols was mainly studied by means of the 2,4-dimethyl-substituted compound 2,4,5,7,8-pentamethylM /-benzo[ 1,3]dioxin-6-ol (59) applied as mixture of isomers 27a it showed an extreme dependence on the amount of coreacting water present. In aqueous media, 59 was oxidized by one oxidation equivalent to 2,5-dihydroxy-3,4,6-trimethyl-acetophenone (61) via 2-(l-hydroxyethyl)-3,5,6-trimethylbenzo-l,4-quinone (60) that could be isolated at low temperatures (Fig. 6.41). This detour explained why the seemingly quite inert benzyl ether position was oxidized while the labile hydroquinone structure remained intact. Two oxidation equivalents gave directly the corresponding para-quinone 62. Upon oxidation, C-2 of the 3-oxa-chroman system carrying the methyl substituent was always lost in the form of acetaldehyde. [Pg.203]

Dermal Effects. Skin irritation was noted in wildlife officers at the RMA after they handled sick or dead ducks without gloves (NIOSH 1981). Although the investigators concluded that diisopropyl methylphosphonate contributed to the local effects, a number of other compounds were present. Analysis of the pond water indicated the presence of a number of organic and inorganic contaminants, including diisopropyl methylphosphonate (11.3 ppm) aldrin (0.368 ppm) dieldrin (0.0744 ppm) dicyclo-pentadiene, bicycloheptadiene, diethyl benzene, dimethyl disulfide, methyl acetate, methyl isobutyl ketone, toluene, and sodium (49,500 ppm) chloride (52,000 ppm) arsenic (1,470 ppm) potassium (180 ppm) fluoride (63 ppm) copper (2.4 ppm) and chromium (0.27 ppm). Because of the presence of numerous compounds, it is unclear whether diisopropyl methylphosphonate was related to the irritation. [Pg.64]

For a number of applications within the rubber industry it is necessary to add a desiccant to the compound to remove traces of water present in fillers or derived from chemical reactions taking place during vulcanisation. Failure to remove this water results in uncontrolled porosity in the product, especially in atmospheric cure conditions. [Pg.140]

A spectrophotometric method based on the light absorption of the coloured Co111 complexes has been used to determine EDTA and NTA in fresh water [424]. In these few cases, actual well-defined compounds were present at concentrations high enough so that the individual compound could be isolated, identified, and measured. This is seldom the case for the chelators in seawater we are usually measuring an attribute, not a compound, with little idea of the actual identity of the compounds. [Pg.430]

In fact, phase diagrams as in Figure 2.2 form indispensable background information for the interpretation of reduction experiments. However, one should realize that equilibrium data as in Figure 2.2 and Table 2.1 refer to the reduction of bulk compounds. Figures valid for the reduction of surface phases may be quite different. Also, traces of water present on the surface of catalyst particles or on the support represent a locally high concentration and may cause the surface to be oxidized under conditions which, interpreted macroscopically, would give rise to complete reduction. [Pg.28]

Micelles forming above the c.m.c. incorporate hydrophobic molecules in addition to those dissolved in the aqueous phase, which results in apparently increased aqueous concentrations. It has to be noted, however, that a micelle-solubilised chemical is not truly water-dissolved, and, as a consequence, is differently bioavailable than a water-dissolved chemical. The bioavailability of hydrophobic organic compounds was, for instance, reduced by the addition of surfactant micelles when no excess separate phase compound was present and water-dissolved molecules became solubilised by the micelles [69], In these experiments, bacterial uptake rates were a function of the truly water-dissolved substrate concentration. It seems therefore that micellar solubilisation increases bioavailability only when it transfers additional separate phase substrate into the aqueous phase, e.g. by increasing the rates of desorption or dissolution, and when micelle-solubilised substrate is efficiently transferred to the microorganisms. Theoretically, this transfer can occur exclusively via the water phase, involving release of substrate molecules from micelles, molecular diffusion through the aqueous phase and microbial uptake of water-dissolved molecules. This was obviously the case, when bacterial uptake rates of naphthalene and phenanthrene responded directly to micelle-mediated lowered truly water-dissolved concentrations of these chemicals [69]. These authors concluded from their experiments that micellar naphthalene and phenanthrene had to leave the micellar phase and diffuse through the water phase to become... [Pg.424]


See other pages where Compounds water present is mentioned: [Pg.382]    [Pg.546]    [Pg.264]    [Pg.28]    [Pg.518]    [Pg.306]    [Pg.247]    [Pg.212]    [Pg.213]    [Pg.181]    [Pg.207]    [Pg.60]    [Pg.342]    [Pg.213]    [Pg.245]    [Pg.400]    [Pg.124]    [Pg.1175]    [Pg.46]    [Pg.1423]    [Pg.132]    [Pg.295]    [Pg.92]    [Pg.182]    [Pg.287]    [Pg.15]    [Pg.404]    [Pg.244]    [Pg.211]    [Pg.123]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Water compounds

© 2024 chempedia.info