Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cinchona synthesis

Alkylation of protected glycine derivatives is one method of a-amino acid synthesis (75). Asymmetric synthesis of a D-cx-amino acid from a protected glycine derivative by using a phase-transfer catalyst derived from the cinchona alkaloids (8) has been reported (76). [Pg.280]

The cinchona alkaloids on degradation break down into derivatives of (1) quinoline and (2) quinuclidine and the synthesis of any one of them involves the preparation of each of these two halves in a form suitable for combination. [Pg.454]

Babe s general formula (p. 443) for the cinchona alkaloids was published in 1908 and a partial synthesis of quinine was effected by Babe and Kindler in 1918, but a complete synthesis of this alkaloid did not become available until 1945 when Woodward and Doering described their ingenious process. [Pg.461]

Chondrodendron polyanthum, 371 Chondrodendron tomentosum, 363, 371, 373, 377, 391 alkaloids, 376 Chondrodine, 363, 364 Chondrofoline, 364, 365 Chrycentrine, 172, 313 Chiysanthemine, 773 Chrysanthemum cineraricefoHum, 773 Chuchuara, 781 Chuehuhuasha, 781 Cicuta virosa, 13 Cinchamidine, 419, 429 Cinchene, 439 Cinchenine, 438, 439, 440 apoCinchenine, 440, 441 Cincholoipon, 438 Cincholoiponic acid, 438, 443 Cinchomeronic acid, 183 Cinchona alkaloid structure, synthesis, 457 Cinchona alkaloids, bactericidal action of some derivatives, 478 centres of asymmetry, 445 constitution, 435 formulae and characters of transformation products, 449, 451 general formula, 443 hydroxydihydro-bases, 448, 452-4 melting-points and specific rotations, 446... [Pg.787]

En route to the total synthesis of cinchona alkaloid meroquinene, a Hoffmann-La Roehe group took advantage of the Hofmann-Loffler-Freytag reaetion to funetionalize the ethyl side ehain in piperidine 49 to give ehloroethylpiperidine 51 via the intermediaey of protonated aminyl radieal 50. °... [Pg.94]

Azirines (three-membered cyclic imines) are related to aziridines by a single redox step, and these reagents can therefore function as precursors to aziridines by way of addition reactions. The addition of carbon nucleophiles has been known for some time [52], but has recently undergone a renaissance, attracting the interest of several research groups. The cyclization of 2-(0-tosyl)oximino carbonyl compounds - the Neber reaction [53] - is the oldest known azirine synthesis, and asymmetric variants have been reported. Zwanenburg et ah, for example, prepared nonracemic chiral azirines from oximes of 3-ketoesters, using cinchona alkaloids as catalysts (Scheme 4.37) [54]. [Pg.134]

Catalytic enantioselective nucleophilic addition of nitroalkanes to electron-deficient alke-nes is a challenging area in organic synthesis. The use of cinchona alkaloids as chiral catalysts has been studied for many years. Asymmetric induction in the Michael addition of nitroalkanes to enones has been carried out with various chiral bases. Wynberg and coworkers have used various alkaloids and their derivatives, but the enantiomeric excess (ee) is generally low (up to 20%).199 The Michael addition of methyl vinyl ketone to 2-nitrocycloalkanes catalyzed by the cinchona alkaloid cinchonine affords adducts in high yields in up to 60% ee (Eq. 4.137).200... [Pg.118]

Another microwave-mediated intramolecular SN2 reaction forms one of the key steps in a recent catalytic asymmetric synthesis of the cinchona alkaloid quinine by Jacobsen and coworkers [209]. The strategy to construct the crucial quinudidine core of the natural product relies on an intramolecular SN2 reaction/epoxide ringopening (Scheme 6.103). After removal of the benzyl carbamate (Cbz) protecting group with diethylaluminum chloride/thioanisole, microwave heating of the acetonitrile solution at 200 °C for 2 min provided a 68% isolated yield of the natural product as the final transformation in a 16-step total synthesis. [Pg.178]

The enantioselective hydrogenation of prochiral substances bearing an activated group, such as an ester, an acid or an amide, is often an important step in the industrial synthesis of fine and pharmaceutical products. In addition to the hydrogenation of /5-ketoesters into optically pure products with Raney nickel modified by tartaric acid [117], the asymmetric reduction of a-ketoesters on heterogeneous platinum catalysts modified by cinchona alkaloids (cinchonidine and cinchonine) was reported for the first time by Orito and coworkers [118-121]. Asymmetric catalysis on solid surfaces remains a very important research area for a better mechanistic understanding of the interaction between the substrate, the modifier and the catalyst [122-125], although excellent results in terms of enantiomeric excesses (up to 97%) have been obtained in the reduction of ethyl pyruvate under optimum reaction conditions with these Pt/cinchona systems [126-128],... [Pg.249]

Scheme 10. Asymmetric synthesis of the a,a-dialkyl-a-amino acids 37 by use of the cinchona alkaloid derivative 12. Scheme 10. Asymmetric synthesis of the a,a-dialkyl-a-amino acids 37 by use of the cinchona alkaloid derivative 12.
B. Lygo, P. G. Wainwright, A New Class of Asymmetric Phase-Transfer Catalysts Derived from Cinchona Alkaloids - Application in the Enantioselective Synthesis of a-Amino Acids , Tetrahedron Lett., 1997, 38, 8595-8598. [Pg.141]

Starting from the Pt-cinchona modified system, more recently an interesting concept has been developed by Feast and coworkers [144], A chiral acidic zeolite was created by loading one molecule of iM,3-dithianc-l-oxide per supercage of zeolite Y, either during or after the zeolite synthesis. Other chiral zeolites were formed by adsorbing ephedrine as a modifier on zeolites X and Y for the Norrish-Yang reaction [145],... [Pg.500]

In the second chapter, Hans Wynberg describes one facet—namely asymmetric catalysis—of the currently very active field of asymmetric synthesis. Wynberg and his co-workers have devised efficient asymmetric syntheses catalyzed by cinchona alkaloids. Several of these reactions are reviewed and rationalized by means of mechanistic models. [Pg.351]

While this manuscript was under preparation, a considerable number of examples of sohd-phase-attached catalysts appeared in the literature which is a clear indication for the dynamic character of this field. These include catalysts based on palladium [131, 132], nickel [133] and rhodium [134] as well applications in hydrogenations including transfer hydrogenations [135, 136] and oxidations [137]. In addition various articles have appeared that are dedicated to immobilized chiral h-gands for asymmetric synthesis such as chiral binol [138], salen [139], and bisoxa-zoline [140] cinchona alkaloid derived [141] complexes. [Pg.234]

The chapter Chiral Modification of Catalytic Surfaces [84] in Design of Heterogeneous Catalysts New Approaches based on Synthesis, Characterization and Modelling summarizes the fundamental research related to the chiral hydrogenation of a-ketoesters on cinchona-modified platinum catalysts and that of [3-ketoesters on tartaric acid-modified nickel catalysts. Emphasis is placed on the adsorption of chiral modifiers as well as on the interaction of the modifier and the organic reactant on catalytic surfaces. [Pg.259]

The Cinchona tree remains the only economically practical source of quinine. Although the development of synthetic quinine is considered a milestone in organic chemistry, it has never been produced industrially as a substitute for naturally occurring quinine. Nevertheless, the implications of the total synthesis of quinine in new strategies for the development of safer and more efficient antimalarial drugs, as we will show in the course of the next paragraphs, is priceless. But, let us discuss this total synthesis first. [Pg.232]

Rabe P, Kindler K. (1918) Cinchona alkaloids. XIX. Partial synthesis of quinine. Ber Dtsh Chem Ges 51 466-467. [Pg.264]

Prostenik M, Prelog V. (1943) Synthetic experiments in the series of the Cinchona alkaloids. IV. Homomeroquinene and the partial synthesis of quinotoxine. Helv ChimActa 26 1965-1971. [Pg.265]

The focus of this review is to discuss the role of Cinchona alkaloids as Brpnsted bases in organocatalytic asymmetric reactions. Cinchona alkaloids are Lewis basic when the quinuclidine nitrogen initiates a nucleophilic attack to the substrate in asymmetric reactions such as the Baylis-Hillman (Fig. 3), P-lactone synthesis, asymmetric a-halogenation, alkylations, carbocyanation of ketones, and Diels-Alder reactions 30-39] (Fig. 4). [Pg.148]

Preliminary mechanistic studies show no polymerization of the unsaturated aldehydes under Cinchona alkaloid catalysis, thereby indicating that the chiral tertiary amine catalyst does not act as a nucleophilic promoter, similar to Baylis-Hilhnan type reactions (Scheme 1). Rather, the quinuclidine nitrogen acts in a Brpnsted basic deprotonation-activation of various cychc and acyclic 1,3-dicarbonyl donors. The conjugate addition of the 1,3-dicarbonyl donors to a,(3-unsaturated aldehydes generated substrates with aU-carbon quaternary centers in excellent yields and stereoselectivities (Scheme 2) Utility of these aU-carbon quaternary adducts was demonstrated in the seven-step synthesis of (H-)-tanikolide 14, an antifungal metabolite. [Pg.150]

The use of diazodicarboxylates has been recently explored in Cinchona alkaloid catalyzed asymmetric reactions. Jprgensen [50] reported the synthesis of non-biaryl atropisomers via dihydroquinine (DHQ) catalyzed asymmetric Friedel-Crafts ami-nation. Atropisomers are compounds where the chirality is attributed to restricted rotation along a chiral axis rather than stereogenic centers. They are useful key moieties in chiral ligands but syntheses of these substrates are tedious. [Pg.155]

Following the reaction, simple extraction provided access to both the hemiester prodnct and the alkaloid withont chromatography and the recovered cinchona alkaloid conld be reused with no deterioration in the ee or yield. This method has found use in the synthesis of P-amino alcohols and in natural product synthesis [198-201] and has recently been reported as an Organic Syntheses method [202],... [Pg.265]

Finally, a highly efficient organocatalytic asymmetric approach was described by Gong et al. in 2006, using chiral phosphoric acids as catalysts. These results opened a window for the development of new optically active DHPMs synthesis (Scheme 19) [96, 97]. More recently, chiral organocatalysts such as Cinchona... [Pg.239]

Figure 6.35 Starting materials for the synthesis of (thio)urea-flinctionalized cinchona alkaloids The main cinchona alkaloids QN, CD, and their pseudoenantiomers QD and CN, respectively, with opposite absolute configuration at the key... Figure 6.35 Starting materials for the synthesis of (thio)urea-flinctionalized cinchona alkaloids The main cinchona alkaloids QN, CD, and their pseudoenantiomers QD and CN, respectively, with opposite absolute configuration at the key...
In 2005, various groups independently realized the potential of the easily available cinchona alkaloids as chiral templates for the synthesis of the new class... [Pg.255]

The Chen group early in 2005 constituted the novel class of thiourea-function-ahzed cinchona alkaloids with the first reported synthesis and application of thioureas 116 (8R, 9S) and 117 (8R, 9R) prepared from cinchonidine and cinchonine in over 60% yield, respectively (Scheme 6.112) [273]. In the Michael addition of thiophenol to an a,(5-unsaturated imide, the thioureas 116 and 117 displayed only poor stereoinduction (at rt 116 7% ee 117 17% ee), but high catalytic activity (99% yield/2h) (Scheme 6.112). [Pg.256]

Quinine is the principal alkaloid derived from the bark of the cinchona tree. It has been used for malaria suppression for over 300 years. By 1959 it was superseded by other drugs, especially chloroquine. After widespread resistance to chloroquine became manifest quinine again became an important antimalarial. Its main uses are for the oral treatment of chloroquine-resistant falciparum malaria and for parenteral treatment of severe attacks of falciparum malaria. Quinine is a blood schizonticide with some gametocytocidal activity. It has no exoerythrocytic activity. Its mechanism of action is not well understood. It can interact with DNA, inhibiting strand separation and ultimately protein synthesis. Resistance of quinine has been increasing in South-East Asia. [Pg.426]

The availability of ctetq) advanced synthons that carry the required chirality is an advantage, particularly in projects aimed at industrial total synthesis. Natural products are often used as synthons, ideally fi om a renewable source, such as microbial fermentations. In a few cases, biotechnology has become an ahemative source. The total theses of the antitumor agent esperamicin A and the immunosuppressant FK-506 are exanq>les. In both cases, the synthon was quinic acid (Barco 1997), cheaply obtained by biotechnology (Chapter 14.1.e) rather than fi om the environmentally noxious extraction fi om the bark of Cinchona spp. Used to build up combinatorial libraries, quinic acid has gained further inq)ortance in organic thesis (Phoon 1999). [Pg.216]

Chiral sulfoxides have emerged as versatile building blocks and chiral auxiliaries in the asymmetric synthesis of pharmaceutical products. The asymmetric oxidation of prochiral sulfides with chiral metal complexes has become one of the most effective routes to obtain these chiral sulfoxides.We have recently developed a new heterogeneous catalytic system (WO3-30% H2O2) which efficiently catalyzes both the asymmetric oxidation of a variety of thioethers (1) and the kinetic resolution of racemic sulfoxides (3), when used in the presence of cinchona alkaloids such as hydroquinidine 2,5-diphenyl-4,6-pyrimidinediyl diether [(DHQD)2-PYR], Optically active sulfoxides (2) are produced in high yields and with good enantioselectivities (Figure 9.3). ... [Pg.288]

A cursory examination of the Cinchona catalysts used in O Donnell-type alkylation [90] of methyl (diphenylimino)glycinate (Appendix 7.A) reveals that only minor modifications to the Cinchona scaffold are required for the synthesis of a catalyst the 8-substituent on the quinuclidine core may either be a vinyl group (as in the parent alkaloids, quinine and quinidine) or can be an ethyl substituent, introduced by hydrogenation. The quinoline system at the 2-position ofthe quinuclidine ring can be unsubstituted if the catalyst is derived from quinine or quinidine, but can contain a 6-methoxy group ifit is derived from cinchonine or cinchonidine. The 3-position ofthe quinuclidine ring may contain either a hydroxy group or else a vinyloxy or benzyloxy... [Pg.174]


See other pages where Cinchona synthesis is mentioned: [Pg.583]    [Pg.457]    [Pg.541]    [Pg.342]    [Pg.83]    [Pg.230]    [Pg.1304]    [Pg.217]    [Pg.413]    [Pg.336]    [Pg.147]    [Pg.147]    [Pg.260]    [Pg.564]    [Pg.83]    [Pg.306]    [Pg.239]    [Pg.161]    [Pg.55]   
See also in sourсe #XX -- [ Pg.381 ]




SEARCH



Cinchona

Cinchona alkaloid structure, synthesis

Cinchona natural products synthesis

Cinchona total synthesis

Cinchona-Derived Chiral Phase-Transfer Catalysts for Other Asymmetric Synthesis

Cinchona-Derived Chiral Poly(Phase-Transfer Catalysts) for Asymmetric Synthesis

Novel cinchona alkaloid organocatalysts synthesis

© 2024 chempedia.info