Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral immobilized

A milestone in the use of this technique was the introduction of the N-(3,5-dinitrobenzoyl)amino acids as chiral immobilized CT-acceptor ligands. In particular, Pirkle et al. [43,44] prepared CSPs by covalently binding the chiral selector to a silica gel support and used them for the separation of several optical isomers by column chromatography. [Pg.141]

In most cases, the proteia is immobilized onto y-aminopropyl sUica and covalently attached usiag a cross-linking reagent such as -carbonyl diimidazole. The tertiary stmcture or three dimensional organization of proteias are thought to be important for their activity and chiral recognition. Therefore, mobile phase conditions that cause proteia "deaaturatioa" or loss of tertiary stmcture must be avoided. [Pg.66]

In recent years the solid-phase hydrosilylation reaction was successfully employed for synthesis of hydrolytically stable surface chemical compounds with Si-C bonds. Of special interest is application of this method for attachment of functional olefins, in particular of acrolein and some chiral ligands. Such matrices can be used for subsequent immobilization of a wide range of amine-containing organic reagents and in chiral chromatography. [Pg.248]

The enantioselective determination of 2,2, 3,3, 4,6 -hexachlorobiphenyl in milk was performed by Glausch et al. (21). These authors used an achiral column for an initial separation, followed by separation of the eluent fraction on a chiral column. Fat was separated from the milk by centrifugation, mixed with sodium sulfate, washed with petroleum ether and filtered. The solvent was evaporated and the sample was purified by gel permeation chromatography (GPC) and silica gel adsorption chromatography. Achiral GC was performed on DB-5 and OV-1701 columns, while the chiral GC was performed on immobilized Chirasil-Dex. [Pg.417]

Proteins. A chiral stationary phase with immobilized a -acid glycoprotein on silica beads was introduced by Hermansson in 1983 [18, 19]. Several other proteins such as chicken egg albumin (ovalbumin), human serum albumin, and cellohy-drolase were also used later for the preparation of commercial CSPs. Their selectivity is believed to occur as a result of excess of dispersive forces acting on the more retained enantiomer [17]. These separation media often exhibit only modest loading capacity. [Pg.58]

Cyclic low molecular weight compounds. Chiral separations using chiral crown ethers immobilized on silica or porous polymer resins were first reported in the... [Pg.58]

Our strategy consisted of the following steps A mixture of potential chiral selectors is immobilized on a solid support and packed to afford a complete-library column , which is tested in the resolution of targeted racemic compounds. If some separation is achieved, the column should be deconvoluted to identify the selector possessing the highest selectivity. The deconvolution consisted in the stepwise preparation of a series of sublibrary columns of lower diversity, each of which constitute a CSP with a reduced number of library members. [Pg.85]

The mixture of deprotected amino acid derivatives in solution was then immobilized onto a polymeric solid support, typically activated 5-)xm macroporous poly(hydroxyethyl methacrylate-co-ethylene dimethacrylate) beads, to afford the chiral stationary phases with a multiplicity of selectors. Although the use of columns... [Pg.86]

In supported liquid membranes, a chiral liquid is immobilized in the pores of a membrane by capillary and interfacial tension forces. The immobilized film can keep apart two miscible liquids that do not wet the porous membrane. Vaidya et al. [10] reported the effects of membrane type (structure and wettability) on the stability of solvents in the pores of the membrane. Examples of chiral separation by a supported liquid membrane are extraction of chiral ammonium cations by a supported (micro-porous polypropylene film) membrane [11] and the enantiomeric separation of propranolol (2) and bupranolol (3) by a nitrate membrane with a A/ -hexadecyl-L-hydroxy proline carrier [12]. [Pg.130]

In the classical set-up of bulk liquid membranes, the membrane phase is a well-mixed bulk phase instead of an immobilized phase within a pore or film. The principle comprises enantioselective extraction from the feed phase to the carrier phase, and subsequently the carrier releases the enantiomer into the receiving phase. As formation and dissociation of the chiral complex occur at different locations, suitable conditions for absorption and desorption can be established. In order to allow for effective mass transport between the different liquid phases involved, hollow fiber... [Pg.130]

A different approach is the use of an ultrafiltration membrane with an immobilized chiral component [31]. The transport mechanism for the separation of d,l-phenylalanine by an enantioselective ultrafiltration membrane is shown schematically in Fig. 5-4a. Depending on the trans-membrane pressure, selectivities were found to be between 1.25 and 4.1, at permeabilities between 10 and 10 m s respectively (Fig. 5-4b). [Pg.133]

An example for this approach is the immobilization of (5 )-(-)-a-A-(2-naph-thyl)leucine, a 7t-donating group on silica. This chiral selector exhibits excellent recognition for 3,5-dinitrobenzoyl (DNB)- and 3,5-dintroanilido (DNAn)-deriva-tives. Amines and alcohols can be derivatized with DNB- or DNAn-chloride to the esters or carbamates and separated on the CSP, as shown by Pirkle for a wide variety of compounds [27]. [Pg.199]

The resolution of racemic ethyl 2-chloropropionate with aliphatic and aromatic amines using Candida cylindracea lipase (CCL) [28] was one of the first examples that showed the possibilities of this kind of processes for the resolution of racemic esters or the preparation of chiral amides in benign conditions. Normally, in these enzymatic aminolysis reactions the enzyme is selective toward the (S)-isomer of the ester. Recently, the resolution ofthis ester has been carried out through a dynamic kinetic resolution (DKR) via aminolysis catalyzed by encapsulated CCL in the presence of triphenylphosphonium chloride immobilized on Merrifield resin (Scheme 7.13). This process has allowed the preparation of (S)-amides with high isolated yields and good enantiomeric excesses [29]. [Pg.179]

Ionic liquid [bmimJPFg can be used as a solvent in yeast reduction [21]. The reduction ofketones with immobilized baker s yeast (alginate) in a 100 10 2 [bmimjPFfi ionic liquid water MeOH mix affords chiral alcohols (Figure 8.28). [Pg.215]

Glos and Reiser [23] introduced aza-bis(oxazolines) as new chiral ligands for copper and palladium catalysts. Because of the structural flexibility of these compounds they also prepared an immobilized ligand by covalent grafting to methoxypoly(ethyleneglycol) (structures 14 and 15 in Scheme 9). [Pg.100]

Non-covalent Immobilization of Catalysts Based on Chiral Diazaligands... [Pg.149]

Non-covalently Immobilized Catalysts Based on Chiral Salen Ligands. . 152... [Pg.149]

Abstract The immobilization of chiral catalysts through non-covalent methods, as opposed to covalent immobilization, allows an easier preparation of chiral heterogeneous catalysts with, in principle, less influence of the support on the conformational preferences of the catalytic complex. In this review the different possibilities for immobilization without forming a covalent bond between the chiral diazahgand and the support, which can be either solid or liquid, are presented. [Pg.149]

In the last 20 years a great deal of effort has been focused towards the immobilization of chiral catalysts [2] and disparate results have been obtained. In order to ensure the retention of the valuable chiral hgand, the most commonly used immobihzation method has been the creation of a covalent bond between the ligand and the support, which is usually a solid, hi many cases this strategy requires additional functionalization of the chiral hgand, and this change - together with the presence of the very bulky support - may produce unpredictable effects on the conformational preferences of the catalytic complex. This in turn affects the transition-state structures and thus the enantioselectivity of the process. [Pg.150]


See other pages where Chiral immobilized is mentioned: [Pg.225]    [Pg.147]    [Pg.191]    [Pg.225]    [Pg.147]    [Pg.191]    [Pg.63]    [Pg.63]    [Pg.66]    [Pg.99]    [Pg.126]    [Pg.259]    [Pg.14]    [Pg.14]    [Pg.84]    [Pg.139]    [Pg.289]    [Pg.297]    [Pg.297]    [Pg.299]    [Pg.287]    [Pg.317]    [Pg.181]    [Pg.334]    [Pg.137]    [Pg.112]    [Pg.112]    [Pg.130]    [Pg.150]    [Pg.154]   
See also in sourсe #XX -- [ Pg.953 ]




SEARCH



Asymmetric hydrogenations over chiral metal complexes immobilized in SILCA

Chiral Catalyst Immobilization Using Organic Polymers

Chiral immobilization chemistry

Chiral stationary phases immobilization

Heterogeneous immobilization, chiral catalysts

Immobilized chiral metal complexe

Immobilized chiral metal complexes

Industrial immobilized chiral metal complexe

Ligands, chiral, immobilization

Polymer Resins for Immobilization of Chiral Organocatalysts

© 2024 chempedia.info