Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantiomers chromatography

The first cellulose enantioseparation was of a racemic amino acid by paper chromatography [8]. Early cellulose TLC smdies were aimed at repeating paper chromatography enantiomer separations more quickly and with better resolution. Cellulose TLC has mostly been used for amino acids, their derivatives, and peptides and the following are examples of successful enantioseparations. Aromatic amino acids were separated on polyester-backed 20 x 20 cm plates by elution with methanolic aqueous 0.1 M HCl (A) or ethanol/pyridine/water (1 1 1) (B). Typical respective R values were 0.75/0.81 for l- and o-tyrosine in mobile phase A and 0.37/0.46 for L- and D-5-methyl tryptophan in B [9,10]. [Pg.46]

Traditionally, chiral separations have been considered among the most difficult of all separations. Conventional separation techniques, such as distillation, Hquid—Hquid extraction, or even some forms of chromatography, are usually based on differences in analyte solubiUties or vapor pressures. However, in an achiral environment, enantiomers or optical isomers have identical physical and chemical properties. The general approach, then, is to create a "chiral environment" to achieve the desired chiral separation and requires chiral analyte—chiral selector interactions with more specificity than is obtainable with conventional techniques. [Pg.60]

W. A. Kirnig, The Practice of Enantiomer Separation by Capillay Gas Chromatography, Hbthig Vedag, Heidelberg, Germany, 1987. [Pg.73]

Three general methods exist for the resolution of enantiomers by Hquid chromatography (qv) (47,48). Conversion of the enantiomers to diastereomers and subsequent column chromatography on an achiral stationary phase with an achiral eluant represents a classical method of resolution (49). Diastereomeric derivatization is problematic in that conversion back to the desired enantiomers can result in partial racemization. For example, (lR,23, 5R)-menthol (R)-mandelate (31) is readily separated from its diastereomer but ester hydrolysis under numerous reaction conditions produces (R)-(-)-mandehc acid (32) which is contaminated with (3)-(+)-mandehc acid (33). [Pg.241]

Chiral Chromatography. Chiral chromatography is used for the analysis of enantiomers, most useful for separations of pharmaceuticals and biochemical compounds (see Biopolymers, analytical techniques). There are several types of chiral stationary phases those that use attractive interactions, metal ligands, inclusion complexes, and protein complexes. The separation of optical isomers has important ramifications, especially in biochemistry and pharmaceutical chemistry, where one form of a compound may be bioactive and the other inactive, inhibitory, or toxic. [Pg.110]

Diaziridines also show slow nitrogen inversion, and carbon-substituted compounds can be resolved into enantiomers, which typically racemize slowly at room temperature (when Af-substituted with alkyl and/or hydrogen). For example, l-methyl-3-benzyl-3-methyl-diaziridine in tetrachloroethylene showed a half-life at 70 °C of 431 min (69AG(E)212). Preparative resolution has been done both by classical methods, using chiral partners in salts (77DOK(232)108l), and by chromatography on triacetyl cellulose (Section 5.08.2.3.1). [Pg.7]

RS- P-Aminoisobutyric acid (a-methyl-P-alanine) [10569-72-9] M 103.1, m 176-178 , 178-180 , 181-182 , R -(-)- isomer [144-90-1] m 183 , [a] -21 (c 0.43, HjO), pKes,(,) 3.7, pKEst(2) 10.2. Colorless prisms from hot H O, were powdered and dried in vacuo. The purity is checked by paper chromatography (Whatman 1) using ninhydrin spray to visualise the amino acid Rp values in 95% MeOH and n-PrOH/5N HCOOH (8 2) are 0.36 and 0.50 respectively. [Kupiecki and Coon Biochem Prep 7 20 7960 Pollack J Am Chem Soc 65 1335 7943.] The R-enantiomer, isolated from iris bulbs or human urine was crystd from H2O and sublimed in vacuo [Asen et al. J Biol Chem 234 343 7959]. The RS-hydrochloride was recrystd from EtOH/Et20 m 128-129 , 130° [Bbhme et al. Chem Ber92 1258, 1260, 1261 7959]. [Pg.107]

Synthetic chiral adsorbents are usually prepared by tethering a chiral molecule to a silica surface. The attachment to the silica is through alkylsiloxy bonds. A study which demonstrates the technique reports the resolution of a number of aromatic compoimds on a 1- to 8-g scale. The adsorbent is a silica that has been derivatized with a chiral reagent. Specifically, hydroxyl groups on the silica surface are covalently boimd to a derivative of f -phenylglycine. A medium-pressure chromatography apparatus is used. The racemic mixture is passed through the column, and, when resolution is successful, the separated enantiomers are isolated as completely resolved fiactions. Scheme 2.5 shows some other examples of chiral stationary phases. [Pg.89]

An interesting and practical example of the use of thermodynamic analysis is to explain and predict certain features that arise in the application of chromatography to chiral separations. The separation of enantiomers is achieved by making one or both phases chirally active so that different enantiomers will interact slightly differently with the one or both phases. In practice, it is usual to make the stationary phase comprise one specific isomer so that it offers specific selectivity to one enantiomer of the chiral solute pair. The basis of the selectivity is thought to be spatial, in that one enantiomer can approach the stationary phase closer than the other. If there is no chiral selectivity in the stationary phase, both enantiomers (being chemically identical) will coelute and will provide identical log(Vr ) against 1/T curve. If, however, one... [Pg.80]

Although it is often possible to predict the effect of the solvent on retention, due to the unique interactive character of both the solvents and the enantiomers, it is virtually impossible to predict the subtle differences that control the separation ratio from present knowledge. Nevertheless, some accurate retention data, taken at different solvent compositions, can allow the retention and separation ratios to be calculated over a wide range of concentrations using the procedure outlined above. From such data the phase system and the column can be optimized to provide the separation in the minimum time, a subject that will be discussed later in the treatment of chromatography theory. [Pg.118]

It is seen from equation (22) that there will, indeed, be a temperature at which the separation ratio of the two solutes will be independent of the solvent composition. The temperature is determined by the relative values of the standard free enthalpies of the two solutes between each solvent and the stationary phase, together with their standard free entropies. If the separation ratio is very large, there will be a considerable difference between the respective standard enthalpies and entropies of the two solutes. As a consequence, the temperature at which the separation ratio becomes independent of solvent composition may well be outside the practical chromatography range. However, if the solutes are similar in nature and are eluted with relatively small separation ratios (for example in the separation of enantiomers) then the standard enthalpies and entropies will be comparable, and the temperature/solvent-composition independence is likely be in a range that can be experimentally observed. [Pg.123]

The resolution of optically active compounds by gas chromatography with chiral phases is a well-established procedure, and the separation of Al-perfluoto-acetylated ammo acid ester enantiomers m 1967 was the first successful application of enantioselective gas-liquid chromatography [39] Ammo acids have been resolved as their A -trifluoroacetyl esters on chiral diamide phases such as N-lauroyl-L-valineferf-butylamideorAl-docosanoyl-L-valme /ez-r-butylamide [40,41,... [Pg.1030]

Figure 10.2 MDGC-MS differentiation between the enantiomers of theaspiranes in an aglycone fraction from puiple passion fruit DB5 pre-column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 0.66 ml/min oven temperature, 60-300 °C at 10 °C/min with a final hold of 25 min) permethylated /3-cyclodextrin column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 1.96 ml/min 80 °C isothermal for 20 min and then programmed to 220 °C at 2 °C/min). Reprinted from Journal of High Resolution Chromatography, 16, G. Full et al., MDGC- MS a powerful tool for enantioselective flavor analysis , pp. 642-644, 1993, with permission from Wiley-VCH. Figure 10.2 MDGC-MS differentiation between the enantiomers of theaspiranes in an aglycone fraction from puiple passion fruit DB5 pre-column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 0.66 ml/min oven temperature, 60-300 °C at 10 °C/min with a final hold of 25 min) permethylated /3-cyclodextrin column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 1.96 ml/min 80 °C isothermal for 20 min and then programmed to 220 °C at 2 °C/min). Reprinted from Journal of High Resolution Chromatography, 16, G. Full et al., MDGC- MS a powerful tool for enantioselective flavor analysis , pp. 642-644, 1993, with permission from Wiley-VCH.
A. Mosandl, U. Hener, U. Hagenauer-Hener and A. Kuster mann, Stereoisomeric flavor compounds. 33. Multidimensional gas chromatography dkect enantiomer separation of -y-lactones from fr uits, foods and beverages , 7. Agric. Food Chem. 38 767-771 (1990). [Pg.245]

Figure 11.4 Chromatograms of plasma samples on a silica-chiralcel OJ coupled column system (a) plasma spiked with oxprenolol (internal standard) (b) plasma spiked with 040 p-g/ml metyrapone and 0.39 p-g/ml metyrapol (racemate) (c) plasma sample obtained after oral administration of 750 mg metaiypone. Peaks are as follows 1, metyrapone 2, metyrapol enantiomers 3, oxprenolol. Reprinted from Journal of Chromatography, 665, J. A. Chiarotto and I. W. Wainer, Determination of metyrapone and the enantiomers of its chfral metabolite metyrapol in human plasma and urine using coupled achfral-chfral liquid cltro-matography, pp. 147-154, copyright 1995, with permission from Elsevier Science. Figure 11.4 Chromatograms of plasma samples on a silica-chiralcel OJ coupled column system (a) plasma spiked with oxprenolol (internal standard) (b) plasma spiked with 040 p-g/ml metyrapone and 0.39 p-g/ml metyrapol (racemate) (c) plasma sample obtained after oral administration of 750 mg metaiypone. Peaks are as follows 1, metyrapone 2, metyrapol enantiomers 3, oxprenolol. Reprinted from Journal of Chromatography, 665, J. A. Chiarotto and I. W. Wainer, Determination of metyrapone and the enantiomers of its chfral metabolite metyrapol in human plasma and urine using coupled achfral-chfral liquid cltro-matography, pp. 147-154, copyright 1995, with permission from Elsevier Science.
Y. Oda, N. Asakawa, Y. Yoshida and T. Sato, On-line determination and resolution of the enantiomers of ketoprofen in plasma using coupled achiral-cliiral high-performance liquid chromatography , 7. Pharm. Biomed. Anal. 10 81-87 (1992). [Pg.294]

Figure 13.2 MDGC-ECD chromatograms of PCB fractions from sediment samples, demonstrating the separation of the enantiomers of (a) PCB 95, (b) PCB 132, and (c) PCB 149 non-labelled peaks were not identified. Reprinted from Journal of Chromatography, A 723, A. Glausch et al, Enantioselective analysis of chiral polyclilorinated biphenyls in sediment samples by multidimensional gas cliromatography-electi on-capture detection after steam distillation-solvent exti action and sulfur removal , pp. 399-404, copyright 1996, with permission from Elsevier Science. Figure 13.2 MDGC-ECD chromatograms of PCB fractions from sediment samples, demonstrating the separation of the enantiomers of (a) PCB 95, (b) PCB 132, and (c) PCB 149 non-labelled peaks were not identified. Reprinted from Journal of Chromatography, A 723, A. Glausch et al, Enantioselective analysis of chiral polyclilorinated biphenyls in sediment samples by multidimensional gas cliromatography-electi on-capture detection after steam distillation-solvent exti action and sulfur removal , pp. 399-404, copyright 1996, with permission from Elsevier Science.
HPLC separations are one of the most important fields in the preparative resolution of enantiomers. The instrumentation improvements and the increasing choice of commercially available chiral stationary phases (CSPs) are some of the main reasons for the present significance of chromatographic resolutions at large-scale by HPLC. Proof of this interest can be seen in several reviews, and many chapters have in the past few years dealt with preparative applications of HPLC in the resolution of chiral compounds [19-23]. However, liquid chromatography has the attribute of being a batch technique and therefore is not totally convenient for production-scale, where continuous techniques are preferred by far. [Pg.4]

Since the first separation of enantiomers by SMB chromatography, described in 1992 [95], the technique has been shown to be a perfect alternative for preparative chiral resolutions [10, 21, 96, 97]. Although the initial investment in the instrumentation is quite high - and often prohibitive for small companies - the savings in solvent consumption and human power, as well as the increase in productivity, result in reduced production costs [21, 94, 98]. Therefore, the technique would be specially suitable when large-scale productions (>100 g) of pure enantiomers are needed. Despite the fact that SMB can produce enantiomers at very high enantiomeric excesses, it is sometimes convenient to couple it with another separation... [Pg.7]

Gas chromatography (GC) has also been used for preparative purposes, but is restricted to relatively volatile racemates such as anesthetics, pheromones or monoterpenes and, therefore, very few applications are reported. Nevertheless, in the cases to which GC may be applied, it could be considered as an economical alternative to HPLC. Most of the resolutions of enantiomers were performed on cyclodex-trin-derived CSPs [109, 144-153], and only on very few occasions were other chiral selectors used [153]. [Pg.13]

W. H. Pirkle and B. C. Hamper, The direct preparative resolution of enantiomers by liquid chromatography on chiral stationary phases in Preparative Liquid Chromatography, B. A. Bidling-meyer (Ed.), Journal Chromatography Library Vol. 38, 3 Edition, Elsevier Science Publishers B. V, Amsterdam (1991) Chapter 7. [Pg.19]

B. Sellergren, Enantiomer separation using tailor-made phases prepared by molecular imprinting in A practical approach to chiral separations by liquid chromatography, G. Subramanian, VCH, Weinheim (1994) Chapter 4. [Pg.19]


See other pages where Enantiomers chromatography is mentioned: [Pg.182]    [Pg.193]    [Pg.826]    [Pg.182]    [Pg.193]    [Pg.826]    [Pg.77]    [Pg.321]    [Pg.323]    [Pg.62]    [Pg.63]    [Pg.68]    [Pg.69]    [Pg.241]    [Pg.241]    [Pg.244]    [Pg.96]    [Pg.337]    [Pg.78]    [Pg.83]    [Pg.1031]    [Pg.1136]    [Pg.266]    [Pg.299]    [Pg.262]    [Pg.3]    [Pg.8]    [Pg.18]   
See also in sourсe #XX -- [ Pg.285 ]




SEARCH



Chromatography enantiomer separation

Chromatography enantiomer/diastereomer separation

Chromatography separation of enantiomers

Column chromatography enantiomer/diastereomer separation

Enantiomer recognition chromatography

Enantiomers chiral chromatography

Enantiomers supercritical fluid chromatography

High-performance liquid chromatography amino acid enantiomers

High-pressure liquid chromatography enantiomers

Preparative Chromatography of Enantiomers

Separation of Enantiomers by Chromatography

Separation of Enantiomers by Liquid Chromatography on Chiral Stationary Phases

Supercritical fluid chromatography enantiomers separation

Supercritical fluid chromatography for enantiomer separation

© 2024 chempedia.info