Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral commercially available

Copper-complexes prepared with other type of N-chelating ligands have been also prepared and evaluated as catalysts for the Diels-Alder reaction. Eng-berts et al. [103] studied enantioselective Diels-Alder reaction of 3-phenyl-l-(2-pyridyl)-2-propen-l-one with cyclopentadiene in water (Scheme 39). By using coordinating chiral, commercially available a-amino-adds and their derivatives with copper salts as catalysts, they obtained the desired product with yields generally exceeding 90%. With L-abrine (72 in Scheme 39) as chiral moiety, an enantiomeric excess of 74% could be achieved. Moreover, the catalyst solution was reused with no loss of enantioselectivity. [Pg.124]

In stereoselective antitheses of chiral open-chain molecules transformations into cyclic precursors should be tried. The erythro-configurated acetylenic alcohol given below, for example, is disconnected into an acetylene monoanion and a symmetrical oxirane (M. A. Adams, 1979). Since nucleophilic substitution occurs with inversion of configuration this oxirane must be trens-conilgurated its precursor is commercially available trans-2-butene. [Pg.204]

Chiral additives, however, do pose some unique problems. Many chiral agents are expensive or are not commercially available, and therefore, must be synthesized. The presence of the chiral additive in the bulk Hquid phase may also interfere with detection or recovery of the analytes. Finally, the presence of enantiomeric impurity in the chiral additive may add analytical complications (10). [Pg.60]

Mobile phases used with this stationary phase are typically 0.01 N perchloric acid with small amounts of methanol or acetonitrile. One significant advantage of these phases is that both configurations of the chiral stationary phase are commercially available and can be obtained from J. T. Baker Inc. and Chiral Technologies, Inc. (Crownpak CR). [Pg.67]

Chiral Hplc Columns. There are about 40 commercially available chiral columns which are suitable for analytical and preparative purposes (57). In spite of the large number of commercially available chiral stationary phases, it is difficult and time-consuming to obtain good chiral separation. In order to try a specific resolution meaninghilly, a battery of chiral hplc columns is necessary and this is quite expensive. [Pg.279]

The primary disadvantage of the conjugate addition approach is the necessity of performing two chiral operations (resolution or asymmetric synthesis) ia order to obtain exclusively the stereochemicaHy desired end product. However, the advent of enzymatic resolutions and stereoselective reduciag agents has resulted ia new methods to efficiently produce chiral enones and CO-chain synthons, respectively (see Enzymes, industrial Enzymes in ORGANIC synthesis). Eor example, treatment of the racemic hydroxy enone (70) with commercially available porciae pancreatic Hpase (PPL) ia vinyl acetate gave a separable mixture of (5)-hydroxyenone (71) and (R)-acetate (72) with enantiomeric excess (ee) of 90% or better (204). [Pg.162]

An hplc assay was developed suitable for the analysis of enantiomers of ketoprofen (KT), a 2-arylpropionic acid nonsteroidal antiinflammatory dmg (NSAID), in plasma and urine (59). Following the addition of racemic fenprofen as internal standard (IS), plasma containing the KT enantiomers and IS was extracted by Hquid-Hquid extraction at an acidic pH. After evaporation of the organic layer, the dmg and IS were reconstituted in the mobile phase and injected onto the hplc column. The enantiomers were separated at ambient temperature on a commercially available 250 x 4.6 mm amylose carbamate-packed chiral column (chiral AD) with hexane—isopropyl alcohol—trifluoroacetic acid (80 19.9 0.1) as the mobile phase pumped at 1.0 mL/min. The enantiomers of KT were quantified by uv detection with the wavelength set at 254 nm. The assay allows direct quantitation of KT enantiomers in clinical studies in human plasma and urine after adrninistration of therapeutic doses. [Pg.245]

The potential for use of chiral natural materials such as cellulose for separation of enantiomers has long been recognized, but development of efficient materials occurred relatively recently. Several acylated derivatives of cellulose are effective chiral stationary phases. Benzoate esters and aryl carbamates are particularly useful. These materials are commercially available on a silica support and imder the trademark Chiralcel. Figure 2.4 shows the resolution of y-phenyl-y-butyrolactone with the use of acetylated cellulose as the adsorbent material. [Pg.89]

The use of carbohydrates as SM s has greatly expanded in recent years, and many cases have been summarized in a text by Hanessian.33 Several examples of such syntheses are indicated in Chart 15. Other commercially available chiral molecules such as a-amino acids or a-hydroxy acids have also been applied widely to the synthesis of chiral targets as illustrated by the last two cases in Chart 15. [Pg.35]

To date, a wide variety of structurally different chiral Mn(III)salen complexes have been prepared, of which only a handful have emerged as synthetically useful catalysts. By far the most widely used Mn(III)salen catalyst is the commercially available Jacobsen catalyst wherein R= -C4H8- and R = = i-Bu (Scheme 1.4.1). In... [Pg.29]

A -sulfinyl chiral auxiliaries have been used to prepare enantiopure tetrahydro-P-carbolines and tetrahydroisoquinolines in good yields under mild reaction conditions. Both enantiomers of V-p-toluenesulfinyltryptamine 46 could be readily prepared from the commercially available Andersen reagents.Compound 46 reacted with various aliphatic aldehydes in the presence of camphorsulfonic acid at -78 °C to give the A-sulfinyl tetrahydro-P-carbolines 47 in good yields. The major diastereomers were obtained after a single crystallization. Removal of the sulfinyl auxiliaries under mildly acidic conditions produced the tetrahydro-P-carbolines 48 as single enantiomers. [Pg.476]

The actual catalyst is a complex formed from osmium tetroxide and a chiral ligand, e.g. dihydroquinine (DHQ) 9, dihydroquinidine (DHQD), Zj -dihydroqui-nine-phthalazine 10 or the respective dihydroquinidine derivative. The expensive and toxic osmium tetroxide is employed in small amounts only, together with a less expensive co-oxidant, e.g. potassium hexacyanoferrate(lll), which is used in stoichiometric quantities. The chiral ligand is also required in small amounts only. For the bench chemist, the procedure for the asymmetric fihydroxylation has been simplified with commercially available mixtures of reagents, e.g. AD-mix-a or AD-mix-/3, ° containing the appropriate cinchona alkaloid derivative ... [Pg.257]

HPLC separations are one of the most important fields in the preparative resolution of enantiomers. The instrumentation improvements and the increasing choice of commercially available chiral stationary phases (CSPs) are some of the main reasons for the present significance of chromatographic resolutions at large-scale by HPLC. Proof of this interest can be seen in several reviews, and many chapters have in the past few years dealt with preparative applications of HPLC in the resolution of chiral compounds [19-23]. However, liquid chromatography has the attribute of being a batch technique and therefore is not totally convenient for production-scale, where continuous techniques are preferred by far. [Pg.4]

The purpose of this study is only intended to illustrate and evaluate the decision tree approach for CSP prediction using as attributes the 166 molecular keys publicly available in ISIS. This assay was carried out a CHIRBASE file of 3000 molecular structures corresponding to a list of samples resolved with an a value superior to 1.8. For each solute, we have picked in CHIRBASE the traded CSP providing the highest enantioselectivity. This procedure leads to a total selection of 18 CSPs commercially available under the following names Chiralpak AD [28], Chiral-AGP [40], Chiralpak AS [28], Resolvosil BSA-7 [41], Chiral-CBH [40], CTA-I (microcrystalline cellulose triacetate) [42], Chirobiotic T [43], Crownpak CR(-i-) [28], Cyclobond I [43], DNB-Leucine covalent [29], DNB-Phenylglycine covalent [29], Chiralcel OB [28], Chiralcel OD [28], Chiralcel OJ [28], Chiralpak OT(-i-) [28], Ultron-ES-OVM [44], Whelk-0 1 [29], (/ ,/ )-(3-Gem 1 [29]. [Pg.120]

These policy decisions by the FDA were the driving force for chiral switches and the commercial development of chromatographic processes such as simulated moving bed (SMB) technology. Due to technological advances such as SMB and the commercial availability of CSPs in bulk quantities for process-scale purification of enantiopure drugs, the production of many single enantiomers now exists on a commercial scale. [Pg.254]

We now tum our attention to the C21-C28 fragment 158. Our retrosynthetic analysis of 158 (see Scheme 42) identifies an expedient synthetic pathway that features the union of two chiral pool derived building blocks (161+162) through an Evans asymmetric aldol reaction. Aldehyde 162, the projected electrophile for the aldol reaction, can be crafted in enantiomerically pure form from commercially available 1,3,4,6-di-O-benzylidene-D-mannitol (183) (see Scheme 45). As anticipated, the two free hydroxyls in the latter substance are methylated smoothly upon exposure to several equivalents each of sodium hydride and methyl iodide. Tetraol 184 can then be revealed after hydrogenolysis of both benzylidene acetals. With four free hydroxyl groups, compound 184 could conceivably present differentiation problems nevertheless, it is possible to selectively protect the two primary hydroxyl groups in 184 in... [Pg.611]

Chiral sulfoxides with at least one sulfur-bonded aryl group have been separated by liquid chromatography into the enantiomers26. Some of the columns employed, which are commercially available, used 3,5-dinitrobenzoyl)phenylglycine bonded to silica... [Pg.58]


See other pages where Chiral commercially available is mentioned: [Pg.66]    [Pg.148]    [Pg.66]    [Pg.66]    [Pg.66]    [Pg.148]    [Pg.66]    [Pg.66]    [Pg.209]    [Pg.231]    [Pg.62]    [Pg.63]    [Pg.63]    [Pg.64]    [Pg.67]    [Pg.70]    [Pg.70]    [Pg.241]    [Pg.243]    [Pg.246]    [Pg.99]    [Pg.100]    [Pg.100]    [Pg.33]    [Pg.969]    [Pg.50]    [Pg.108]    [Pg.4]    [Pg.58]    [Pg.295]    [Pg.316]    [Pg.317]    [Pg.310]    [Pg.702]    [Pg.760]    [Pg.525]    [Pg.270]    [Pg.39]   
See also in sourсe #XX -- [ Pg.160 ]




SEARCH



Commercial availability

Commercially available

© 2024 chempedia.info