Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorinated hydrocarbons reaction with

All this was later put on a sound basis as a result of more precise measurements of rate constants and of activation energies. However, it did not require precise measurements to predict which chlorinated hydrocarbons would decompose by a radical chain mechanism and which by the unimolecular mechanism. Clearly, if the chlorinated hydrocarbon, or the product from the pyrolysis of the chlorinated hydrocarbon reacted with chlorine atoms to break the chain then the chain mechanism would not exist. Such chlorinated hydrocarbons would decompose by the unimolecular mechanism. Mono-chlorinated derivatives of propane, butane, cyclohexane, etc. would afford propylene, butenes, cyclohexene, etc. All these olefins are inhibitors of chlorine radical chain reactions because of the attack of chlorine atoms at their allylic positions to give the corresponding stabilized allylic radicals which do not carry the chain. [Pg.4]

J. F. Durana and J. D. McDonald, Infrared chemiluminescence studies of chlorine substitution reactions with brominated unsaturated hydrocarbons, J. Chem. Phys. 64 2518 (1976). [Pg.32]

In early designs, the reaction heat typically was removed by cooling water. Crude dichloroethane was withdrawn from the reactor as a liquid, acid-washed to remove ferric chloride, then neutralized with dilute caustic, and purified by distillation. The material used for separation of the ferric chloride can be recycled up to a point, but a purge must be done. This creates waste streams contaminated with chlorinated hydrocarbons which must be treated prior to disposal. [Pg.285]

The most abundant natural steroid is cholesterol. It can be obtained in large quantides from wool fat (15%) or from brain or spinal chord tissues of fat stock (2-4%) by extraction with chlorinated hydrocarbons. Its saturated side-chain can be removed by chromium trioxide oxidation, but the yield of such reactions could never be raised above 8% (see page 118f.). [Pg.285]

Chlorine reacts with saturated hydrocarbons either by substitution or by addition to form chlorinated hydrocarbons and HCl. Thus methanol or methane is chlorinated to produce CH Cl, which can be further chlorinated to form methylene chloride, chloroform, and carbon tetrachloride. Reaction of CI2 with unsaturated hydrocarbons results in the destmction of the double or triple bond. This is a very important reaction during the production of ethylene dichloride, which is an intermediate in the manufacture of vinyl chloride ... [Pg.510]

Chlorinated C2> Perchloroethylene (PCE) and trichloroethylene (TCE) can be produced either separately or as a mixture in varying proportions by reaction of C2-chlorinated hydrocarbons, eg, C2-chlorinated waste streams or ethylene dichloride, with a mixture of oxygen and chlorine or HCl. [Pg.450]

Acetjiene has found use as a feedstock for production of chlorinated solvents by reaction with hydrogen chloride or chlorine (6). However, because of safety concerns and the lower price of other feedstock hydrocarbons, very Htfle acetylene is used to produce chlorinated hydrocarbons in the United States (see Acetylene-derived chemicals). [Pg.506]

Many chlorinated hydrocarbons react readily with aluminum in the so-caHed bleeding reaction. A red aluminum chloride—chlorinated hydrocarbon complex is formed. Storage of uninhibited chlorinated solvents in aluminum vessels results in corrosion in a short period of time. Proprietary organic inhibitors permit commercial use of reactive solvents such as 1,1,1-trichloroethane and trichloroethylene for cleaning of aluminum. [Pg.507]

Methylene chloride is one of the more stable of the chlorinated hydrocarbon solvents. Its initial thermal degradation temperature is 120°C in dry air (1). This temperature decreases as the moisture content increases. The reaction produces mainly HCl with trace amounts of phosgene. Decomposition under these conditions can be inhibited by the addition of small quantities (0.0001—1.0%) of phenoHc compounds, eg, phenol, hydroquinone, -cresol, resorcinol, thymol, and 1-naphthol (2). Stabilization may also be effected by the addition of small amounts of amines (3) or a mixture of nitromethane and 1,4-dioxane. The latter diminishes attack on aluminum and inhibits kon-catalyzed reactions of methylene chloride (4). The addition of small amounts of epoxides can also inhibit aluminum reactions catalyzed by iron (5). On prolonged contact with water, methylene chloride hydrolyzes very slowly, forming HCl as the primary product. On prolonged heating with water in a sealed vessel at 140—170°C, methylene chloride yields formaldehyde and hydrochloric acid as shown by the following equation (6). [Pg.519]

Oxychlorination of G2 Chlorinated Hydrocarbons. Tetrachloroethylene and trichloroethylene can be produced by reaction of EDC with chlorine or HCl and oxygen in the presence of a catalyst. When hydrochloric acid is used, additional oxygen is requked. Product distribution is varied by controlling reactant ratios. This process is advantageous in that no by-product HCl is produced, and it can be integrated with other processes as a net HCl consumer. The reactions may be represented as follows ... [Pg.28]

Materials of Construction. GeneraHy, carbon steel is satisfactory as a material of construction when handling propylene, chlorine, HCl, and chlorinated hydrocarbons at low temperatures (below 100°C) in the absence of water. Nickel-based aHoys are chiefly used in the reaction area where resistance to chlorine and HCl at elevated temperatures is required (39). Elastomer-lined equipment, usuaHy PTFE or Kynar, is typicaHy used when water and HCl or chlorine are present together, such as adsorption of HCl in water, since corrosion of most metals is excessive. Stainless steels are to be avoided in locations exposed to inorganic chlorides, as stainless steels can be subject to chloride stress-corrosion cracking. Contact with aluminum should be avoided under aH circumstances because of potential undesirable reactivity problems. [Pg.34]

Several other changes that are supposed to slow down the reaction can cause runaway. In the case of ethylene oxidation, chlorinated hydrocarbons are used as inhibitors. These slow down both the total and the epoxidation, although the latter somewhat less. When the reaction is running too high and the inhibitor feed is suddenly increased in an attempt to control it, a runaway may occur. The reason is similar to that for the feed temperature cut situation. Here the inhibitor that is in the ppm region reacts with the front of the catalytic bed and slowly moves down stream. The unconverted reactants reach the hotter zone before the increased inhibitor concentration does. [Pg.206]

While ethyl chloride is one of the least toxic of all chlorinated hydrocarbons, CE is a toxic pollutant. The off-gas from the reactor is scrubbed with water in two absoiption columns. The first column is intended to recover the majority of unreacted ethanol, hydrogen chloride, and CE. The second scrubber purifies the product fiom traces of unreacted materials and acts as a back-up column in case the first scrubber is out of operation. Each scrubber contains two sieve plates and has an overall column efficiency of 65% (i.e., NTP = 1.3). Following the scrubber, ethyl chloride is finished and sold. The aqueous streams leaving the scrubbers are mixed and recycled to the reactor. A fraction of the CE recycled to the reactor is reduced to ethyl chloride. This side reaction will be called the reduction reaction. The rate of CE depletion in the reactor due to this reaction can be approximated by the following pseudo first order expression ... [Pg.162]

Higher paraffinic hydrocarbons than methane are not generally used for producing chemicals by direct reaction with chemical reagents due to their lower reactivities relative to olefins and aromatics. Nevertheless, a few derivatives can be obtained from these hydrocarbons through oxidation, nitration, and chlorination reactions. These are noted in Chapter 6. [Pg.404]

Xylan sulphates, known also as pentosan polysulphates (PPS), are permanently studied with regard to their biological activities [3,419-422]. Usually, sulphuric acid, sulphur trioxide, or chlorsulphonic acid are employed as sul-phating agents alone or in combination with alcohols, amines or chlorinated hydrocarbons as reaction media [423]. [Pg.52]

Mere destruction of the original hazardous material is not, however, an adequate measure of the performance of an incinerator. Products of incomplete combustion can be as toxic as, or even more toxic than, the materials from which they evolve. Indeed, highly mutagenic PAHs are readily generated along with soot in fuel-rich regions of most hydrocarbon flames. Formation of dioxins in the combustion of chlorinated hydrocarbons has also been reported. We need to understand the entire sequence of reactions involved in incineration in order to assess the effectiveness and risks of hazardous waste incineration. [Pg.134]

The reaction of volatile chlorinated hydrocarbons with hydroxyl radicals is temperature dependent and thus varies with the seasons, although such variation in the atmospheric concentration of trichloroethylene may be minimal because of its brief residence time (EPA 1985c). The degradation products of this reaction include phosgene, dichloroacetyl chloride, and formyl chloride (Atkinson 1985 Gay et al. 1976 Kirchner et al. 1990). Reaction of trichloroethylene with ozone in the atmosphere is too slow to be an effective agent in trichloroethylene removal (Atkinson and Carter 1984). [Pg.211]

This concept meshes with another important environmental issue solvents for organic reactions. The use of chlorinated hydrocarbon solvents, traditionally the solvent of choice for a wide variety of organic reactions, has been severely curtailed. In fact, so many of the solvents favoured by organic chemists have been blacklisted that the whole question of solvents requires rethinking. The best solvent is no solvent and if a solvent (diluent) is needed then water is preferred. Water is non-toxic, non-inflammable, abundantly available, and inexpensive. Moreover, owing to its highly polar character, one can expect novel reactivities and selectivities for organometallic catalysis in water. [Pg.46]

More experimental work has been done with DDT than with all the other five chlorinated hydrocarbons combined, probably because DDT was the first of the group found to have insecticidal value. Carter (10) has summarized the several colorimetric methods for DDT. The one proposed by Stiff and Castillo (51), as modified by Claborn (14), and the one by Schechter and Haller (47) have probably been most widely used. In the Stiff and Castillo method, when the DDT is heated in pyridine solution containing xanthydrol and potassium hydroxide, a red color develops which is proportional to the quantity of DDT present. The reaction is sensitive to 10 micrograms. As TDE does not give a color with this reagent, Claborn (14) has proposed the reaction for the determination of DDT in the presence of TDE. He has also shown that for the development of the color the amount of water in the pyridine is critical. [Pg.68]


See other pages where Chlorinated hydrocarbons reaction with is mentioned: [Pg.509]    [Pg.47]    [Pg.608]    [Pg.17]    [Pg.257]    [Pg.374]    [Pg.645]    [Pg.393]    [Pg.315]    [Pg.131]    [Pg.514]    [Pg.532]    [Pg.28]    [Pg.314]    [Pg.181]    [Pg.17]    [Pg.32]    [Pg.326]    [Pg.19]    [Pg.165]    [Pg.138]    [Pg.5]    [Pg.1538]    [Pg.199]    [Pg.150]    [Pg.42]    [Pg.664]    [Pg.67]    [Pg.729]   
See also in sourсe #XX -- [ Pg.167 , Pg.177 ]




SEARCH



Aromatic hydrocarbons reactions with chlorine dioxide

Chlorinated hydrocarbon reaction

Chlorination reactions

Chlorination reactions with

Chlorine atoms aromatic hydrocarbons, reactions with

Chlorine reaction with hydrocarbons

Chlorine reaction with hydrocarbons

Chlorine reactions

Chlorins reactions

Hydrocarbons, chlorination

Hydrocarbons, reactions

Reaction with chlorine

Reaction with hydrocarbons

© 2024 chempedia.info