Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorinated hydrocarbon toxicity

Fowler JS. 1970. Chlorinated hydrocarbon toxicity in the fowl and duck. J Comp Pathol 80 465-471. [Pg.153]

Traiger GJ, Plaa GL. 1974. Chlorinated hydrocarbon toxicity Potentiation by isopropyl alcohol and acetone. Arch Environ Health 28 276-278. [Pg.237]

Walter PA. Craigmill A. Villaume J. et al. 1976. Chlorinated hydrocarbon toxicity... [Pg.242]

Jernigan JD, Pounds JG, Harbison RD. 1983. Potentiation of chlorinated hydrocarbon toxicity by 2,5-hexanedione in primary cultures of adult rat hepatocytes. Fundam AppI Toxicol 3 22-26. [Pg.87]

CeUulose triacetate is insoluble in acetone, and other solvent systems are used for dry extmsion, such as chlorinated hydrocarbons (eg, methylene chloride), methyl acetate, acetic acid, dimethylformamide, and dimethyl sulfoxide. Methylene chloride containing 5—15% methanol or ethanol is most often employed. Concerns with the oral toxicity of methylene chloride have led to the recent termination of the only triacetate fiber preparation faciHty in the United States, although manufacture stiH exists elsewhere in the world (49). [Pg.296]

The FDA has pubhshed methods for the deterrnination of residual solvents in spice extracts such as oleoresins and has limited the concentrations of those specific solvents that are permitted. Chlorinated hydrocarbons and benzene have been almost completely removed from use as extracting solvents in the United States their use continues overseas where toxicity regulations are less stringent. The presence of pesticides or herbicides in spices is rigidly controHed by the FDA. [Pg.27]

Tetrachloroethane is one of the most toxic chlorinated hydrocarbons (127,128). The Hver is most affected. [Pg.14]

Hexachloroethane is considered to be one of the more toxic chlorinated hydrocarbons. The 1991 ACGIH recommended time-weighted average (TWA) for hexachloroethane was 1 ppm or 10 mg /m of air. Skin adsorption is a route of possible exposure ha2ard. The primary effect of hexachloroethane is depression of the central nervous system (147). Pentachloroethane and tetrachloroethylene are primary metaboHtes of hexachloroethane in sheep (148). [Pg.15]

Some authorities question whether dmnkeimess can result from the inhalation of ethyl alcohol vapors. Experience has demonstrated that in any event such intoxication is indeed rare (281). There is no concrete evidence that the inhalation of ethyl alcohol vapor will cause cirrhosis. Liver function is definitely impaired during alcohol intoxication (282), making the subject more susceptible to the toxic effects of chlorinated hydrocarbons. [Pg.414]

The variation in toxicity of common organophosphate insecticides is exemplified in Table 5.37. The range of chlorinated hydrocarbon insecticides (Table 5.38) have, with the exception of Endrin and Isodrin, somewhat lower oral and dermal toxicities. The toxicities of a range of oilier insecticides, fungicides, herbicides and rodenticides are summarized in Table 5.39. [Pg.128]

While ethyl chloride is one of the least toxic of all chlorinated hydrocarbons, CE is a toxic pollutant. The off-gas from the reactor is scrubbed with water in two absoiption columns. The first column is intended to recover the majority of unreacted ethanol, hydrogen chloride, and CE. The second scrubber purifies the product fiom traces of unreacted materials and acts as a back-up column in case the first scrubber is out of operation. Each scrubber contains two sieve plates and has an overall column efficiency of 65% (i.e., NTP = 1.3). Following the scrubber, ethyl chloride is finished and sold. The aqueous streams leaving the scrubbers are mixed and recycled to the reactor. A fraction of the CE recycled to the reactor is reduced to ethyl chloride. This side reaction will be called the reduction reaction. The rate of CE depletion in the reactor due to this reaction can be approximated by the following pseudo first order expression ... [Pg.162]

Particulate Matter, Chlorinated Hydrocarbons, and Toxic Pollutants >2... [Pg.1253]

In the selection of control equipment, the most important waste-gas characteristics are volumetric flow rate, concentration and composition of organic compounds in the waste-gas, waste-gas temperature and humidity, and rbe content of particulate matter, chlorinated hydrocarbons, and toxic pollutants. Other factors influencing the equipment selection are the required removal efficiency, recovery requirements, investment and operating costs, ease of installation, and considerations of operation and maintenance. The selection of a suitable control method is based on the fundamental selection criteria presented as well as the special characteristics of the project. [Pg.1266]

Mere destruction of the original hazardous material is not, however, an adequate measure of the performance of an incinerator. Products of incomplete combustion can be as toxic as, or even more toxic than, the materials from which they evolve. Indeed, highly mutagenic PAHs are readily generated along with soot in fuel-rich regions of most hydrocarbon flames. Formation of dioxins in the combustion of chlorinated hydrocarbons has also been reported. We need to understand the entire sequence of reactions involved in incineration in order to assess the effectiveness and risks of hazardous waste incineration. [Pg.134]

Solvent wiping. Rubbers tend to swell by application of solvents and the mechanical interlocking of the adhesive is favored. Although chlorinated hydrocarbon solvents are the most effective, they are toxic and cannot be used toluene and ketones are currently the most common solvents. The treatment with solvents is effective in the removal of processing oils and plasticizers in vulcanized mbbers, but zinc stearate is not completely removed and antiozonant wax gradually migrates to the mbber/polyurethane adhesive interface. Table 27.1 shows the moderate increase in adhesion produced in SBR by MEK wiping. [Pg.762]

Wastewaters containing chlorinated hydrocarbons (CHCs) are very toxic for aquatic system even at concentrations of ppm levels [1] thus, appropriate treatment technologies are required for processing them to non-toxic or more biologically amenable intermediates. Catalytic wet oxidation can offer an alternative approach to remove a variety of such toxic organic materials in wet streams. Numerous supported catalysts have been applied for the removal of aqueous organic wastes via heterogeneous wet catalysis [1,2]. [Pg.305]

Blankenship A, Chang DPY, Jones AD, et al. 1994. Toxic combustion by-products from the incineration of chlorinated hydrocarbons and plastics. Chemosphere 28 183-196. [Pg.254]

Malins DC, BB McCain, DW Brown, MS Myers, MM Krahn, S-L Chan (1987) Toxic chemicals, including aromatic and chlorinated hydrocarbons and their derivatives, and liver lesions in white croaker (Genyonemus lineatus) from the vicinity of Los Angeles. Environ Sci Technol 21 765-770. [Pg.101]

This concept meshes with another important environmental issue solvents for organic reactions. The use of chlorinated hydrocarbon solvents, traditionally the solvent of choice for a wide variety of organic reactions, has been severely curtailed. In fact, so many of the solvents favoured by organic chemists have been blacklisted that the whole question of solvents requires rethinking. The best solvent is no solvent and if a solvent (diluent) is needed then water is preferred. Water is non-toxic, non-inflammable, abundantly available, and inexpensive. Moreover, owing to its highly polar character, one can expect novel reactivities and selectivities for organometallic catalysis in water. [Pg.46]

Stability Unstable in air. Protect from water or moisture. Store away horn heat or ignition sources and sulfur compounds. Reacts with sulfur and sulfur compounds, producing highly toxic VX or VX-like compounds. It completely dissolves polymethylmethacrylate. It is incompatible with calcium hypochlorite (HTH), many chlorinated hydrocarbons, selenium, selenium compounds, moisture, oxidants, and carbon tetrachloride. [Pg.166]

Making a list, Muller outlined the desirable characteristics of an ideal insecticide. It should be toxic to insects but harmless to mammals, fish, and plants act rapidly have no irritating odor and be inexpensive. To his list, Muller added two more properties. The ideal insecticide should affect as many kinds of insects as possible, and it should be chemically stable for a long time. Finally, Muller decided to use as a starting point Geigy s mothproofing compound, the chlorinated hydrocarbon that was extremely stable on woolens. Thus, from the beginning, Muller s search contained the seeds of its own disaster. In the future, it would kill beneficial as well as harmful insects, and it would persist for decades in the environment. [Pg.152]

Organic solvents Chlorinated hydrocarbons Heavy metals Cyanide, other toxics Conventional pollutants... [Pg.45]

Landrigan PJ Mount Sinai School of Medicine of CUNY, New York, NY Lead and organochlorines in New York City study the current urban sources, environmental distribution and toxic effects on human health of lead and persistent chlorinated hydrocarbons—in particular PCBs and DDT National Institute of Environmental Health Sciences... [Pg.362]


See other pages where Chlorinated hydrocarbon toxicity is mentioned: [Pg.62]    [Pg.169]    [Pg.62]    [Pg.62]    [Pg.169]    [Pg.62]    [Pg.295]    [Pg.311]    [Pg.212]    [Pg.516]    [Pg.532]    [Pg.2189]    [Pg.273]    [Pg.196]    [Pg.197]    [Pg.194]    [Pg.10]    [Pg.5]    [Pg.137]    [Pg.284]    [Pg.65]    [Pg.206]    [Pg.292]    [Pg.926]    [Pg.945]    [Pg.440]    [Pg.120]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Chlorinated toxicity

Chlorine toxicity

Hydrocarbons toxicity

Hydrocarbons, chlorination

Toxicity chlorination

© 2024 chempedia.info