Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloride titration with

Addition of silver nitrate to a solution of a chloride in dilute nitric acid gives a white precipitate of silver chloride, AgCl, soluble in ammonia solution. This test may be used for gravimetric or volumetric estimation of chloride the silver chloride can be filtered off, dried and weighed, or the chloride titrated with standard silver nitrate using potassium chromate(VI) or fluorescein as indicator. [Pg.348]

Chloride Mercuric nitrate Chloride titration with mercuric ions Chromate, Fe3+, and S032- 50,52... [Pg.286]

Figure 20-3. Potentiometric titration curve of chloride titrated with silver ion. Figure 20-3. Potentiometric titration curve of chloride titrated with silver ion.
I)Chlorides. Add to ca a 10 g sample weighed to 0.1 mg in a porcelain casserole, ca 80 ml of 10% NaOH soln and boil until all ammonia is driven off. Dissolve the residue in ca 150 ml cold distd w, neutralize with nitric acid and add a slight excess of Ca carbonate (free from chlorides). Titrate with N/10 Ag nitrate soln, using K chromate as an indicator. Calculate the chlorides found to %-age of NH C1 in the sample Note If the amt of chlorides in Grade III AN is not above 0.02%, the following turbido-metric procedure may be used ... [Pg.372]

Prepare a spreadsheet to plot the titration curve of 100 mL 0.1 M chloride titrated with 0.1 M silver nitrate (Figure 11.1). See your CD for a suggested setup. Use the spreadsheet to change the concentrations of chloride and silver (e.g., 0.2 M each, 0.05 M each), and notice how the titration curve changes. Note that there is a limit to how low the concentrations can go in these calculated plots because eventually the solubility of the AgCl at 99.9 and 100.1 mL titrant becomes appreciable. [Pg.353]

Ammonia or primary or secondary amines have been used instead of alcohols in the differential procedures. Only two examples of application to a sulphonyl halide could be found Klamann256 used aniline to determine p-toluenesulphonyl chloride, titrating with NaOH. Recently Spince, Luse and collaborators260,261 determined aromatic sulphonyl chlorides using aniline or a-naphthylamine in DMF or DMSO, titrating with KOH. [Pg.332]

Add a known volume ofo oaM.AgNOj solution (in excess) and boil the solution until the silver chloride has coagulated. Filter through a conical 5 cm. funnel, ensuring that the filter-paper does not protrude above the r m of the funnel. Wash the silver chloride and the filter-paper several times with a fine jet of distilled water. To the united filtrate and washings add i ml. of saturated ferric alum solution. The solution should be almost colourless if it is more than faintly coloured, add a few drops of concentrated nitric acid. Then titrate with 0 02M-ammonium thiocyanate solution until the permanent colour of ferric thiocyanate is just perceptible. (Alternatively the chloride may be determined potentiometrically.)... [Pg.507]

The contents of B, which act as a control, are treated with mercuric chloride in order to inhibit the action of the enzyme, and then 10 ml. of urease solution are added. The solution is diluted with water and ammonium chloride added (in order to balance the ammonium chloride subsequently formed in A). Meth) l-red is then added and the solution is titrated with Mj 10 HCl from a second burette B until a bright red colour is obtained. [Pg.520]

The solution in A is now treated with mercuric chloride and methyl-red, and then titrated with Ml 10 HCl until its colour matches that of the solution in B. The difference in the volume of HCl run in from the burettes A and Bi is a measure of the amount of urea present. [Pg.520]

The procedure is to pass purified hydrogen through a hot solution of the pure acid chloride in toluene or xylene in the presence of the catalyst the exit gases are bubbled through water to absorb the hydrogen chloride, and the solution is titrated with standard alkali from time to time so that the reduction may be stopped when the theoretical quantity of hydrogen chloride has been evolved. Further reduction would lead to the corresponding alcohol and hydrocarbon ... [Pg.691]

Standard EDTA Solutions. Disodium dihydrogen ethylenediaminetetraacetate dihydrate is available commercially of analytical reagent purity. After drying at 80°C for at least 24 hr, its composition agrees exactly with the dihydrate formula (molecular weight 372.25). It may be weighed directly. If an additional check on the concentration is required, it may be standardized by titration with nearly neutralized zinc chloride or zinc sulfate solution. [Pg.1168]

Chloride is determined by titrating with Hg(N03)2, forming soluble HgCb-The sample is acidified to within the pH range of 2.3-3.8 where diphenylcarbazone, which forms a colored complex with excess Hg +, serves as the visual indicator. Xylene cyanol FF is added as a pH indicator to ensure that the pH is within the desired range. The initial solution is a greenish blue, and the titration is carried out to a purple end point. [Pg.328]

Quantitative. Classically, silver concentration ia solution has been determined by titration with a standard solution of thiocyanate. Ferric ion is the iadicator. The deep red ferric thiocyanate color appears only when the silver is completely titrated. GravimetricaHy, silver is determined by precipitation with chloride, sulfide, or 1,2,3-benzotriazole. Silver can be precipitated as the metal by electro deposition or chemical reduciag agents. A colored silver diethjldithiocarbamate complex, extractable by organic solvents, is used for the spectrophotometric determination of silver complexes. [Pg.91]

Various methods can be used to analy2e succinic acid and succinic anhydride, depending on the characteristics of the material. Methods generally used to control specifications of pure products include acidimetric titration for total acidity or purity comparison with Pt—Co standard calibrated solutions for color oxidation with potassium permanganate for unsaturated compounds subtracting from the total acidity the anhydride content measured by titration with morpholine for content of free acid in the anhydride atomic absorption or plasma spectroscopy for metals titration with AgNO or BaCl2 for chlorides and sulfates, respectively and comparison of the color of the sulfide solution of the metals with that of a solution with a known Pb content for heavy metals. [Pg.538]

Sodium thiosulfate is determined by titration with standard iodine solution (37). Sulfate and sulfite are determined together by comparison of the turbidity produced when barium chloride is added after the iodine oxidation with the turbidity produced by a known quantity of sulfate iu the same volume of solution. The absence of sulfide is iadicated when the addition of alkaline lead acetate produces no color within one minute. [Pg.30]

The determination of tin in metals containing over 75 wt % tin (eg, ingot tin) requites a special procedure (17). A 5-g sample is dissolved in hydrochloric acid, reduced with nickel, and cooled in CO2. A calculated weight of pure potassium iodate (dried at 100°C) and an excess of potassium iodide (1 3) are dissolved in water and added to the reduced solution to oxidize 96—98 wt % of the stannous chloride present. The reaction is completed by titration with 0.1 Af KIO —KI solution to a blue color using starch as the indicator. [Pg.60]

Chloride. Chloride is common in freshwater because almost all chloride salts are very soluble in water. Its concentration is generally lO " to 10 M. Chloride can be titrated with mercuric nitrate. Diphenylcarbazone, which forms a purple complex with the excess mercuric ions at pH 2.3—2.8, is used as the indicator. The pH should be controlled to 0.1 pH unit. Bromide and iodide are the principal interferences, whereas chromate, ferric, and sulfite ions interfere at levels greater than 10 mg/L. Chloride can also be deterrnined by a colorimetric method based on the displacement of thiocyanate ion from mercuric thiocyanate by chloride ion. The Hberated SCN reacts with ferric ion to form the colored complex of ferric thiocyanate. The method is suitable for chloride concentrations from 10 to 10 M. [Pg.231]

Impurities in bromine may be deterrnined quantitatively (54). Weighing the residue after evaporation of a bromine sample yields the total nonvolatile matter. After removing the bromine, chloride ion may be deterrnined by titration with mercuric nitrate, and iodide ion by titration with thiosulfate water and organic compounds may be detected by infrared spectroscopy sulfur may be deterrnined turbidimetricaHy as barium sulfate and heavy metals may be deterrnined colorimetricaHy after conversion to sulfides. [Pg.288]

Chlorate Analysis. Chlorate ion concentration is determined by reaction with a reducing agent. Ferrous sulfate is preferred for quaHty control (111), but other reagents, such as arsenious acid, stannous chloride, and potassium iodide, have also been used (112). When ferrous sulfate is used, a measured excess of the reagent is added to a strong hydrochloric acid solution of the chlorate for reduction, after which the excess ferrous sulfate is titrated with an oxidant, usually potassium permanganate or potassium dichromate. [Pg.499]

There is no specific color or other reaction by which methyl chloride can be detected or identified. QuaUty testing of methyl chloride for appearance, water content, acidity, nonvolatile residue, residual odor, methanol, and acetone is routinely done by production laboratories. Water content is determined with Kad Fischer reagent using the apparatus by Kieselbach (55). Acidity is determined by titration with alcohoHc sodium hydroxide solution. The nonvolatile residue, consisting of oil or waxy material, is determined by evaporating a sample of the methyl chloride at room temperature. The residue is examined after evaporation for the presence of odor. Methanol and acetone content are determined by gas chromatography. [Pg.516]

The side-chain chlorine contents of benzyl chloride, benzal chloride, and benzotrichlorides are determined by hydrolysis with methanolic sodium hydroxide followed by titration with silver nitrate. Total chlorine determination, including ring chlorine, is made by standard combustion methods (55). Several procedures for the gas chromatographic analysis of chlorotoluene mixtures have been described (56,57). Proton and nuclear magnetic resonance shifts, characteristic iafrared absorption bands, and principal mass spectral peaks have been summarized including sources of reference spectra (58). Procedures for measuring trace benzyl chloride ia air (59) and ia water (60) have been described. [Pg.61]

The sodium carbonate content may be deterrnined on the same sample after a slight excess of silver nitrate has been added. An excess of barium chloride solution is added and, after the barium carbonate has setded, it is filtered, washed, and decomposed by boiling with an excess of standard hydrochloric acid. The excess of acid is then titrated with standard sodium hydroxide solution, using methyl red as indicator, and the sodium carbonate content is calculated. [Pg.384]

Other ions, eg, ferrate, chloride, and formate, are determined by first removing the cyanide ion at ca pH 3.5 (methyl orange end point). Iron is titrated, using thioglycolic acid, and the optical density of the resulting pink solution is measured at 538 nm. Formate is oxidized by titration with mercuric chloride. The mercurous chloride produced is determined gravimetricaHy. Chloride ion is determined by a titration with 0.1 Ai silver nitrate. The end point is determined electrometricaHy. [Pg.384]

With materials containing low concentrations of acids, the Hberated hydrogen chloride is titrated with sodium hydroxide, either electrometricaHy (20) or with an indicator (21). [Pg.427]

IQ. To determine the concentration of chloride ion, - a 5-mL aliquot of the methyl lithium solution is cautiously added to 25 ml of water and the resulting solution is acidified with concentrated sulfuric acid and then treated with 2-3 ml of ferric ammonium sulfate [Fe(NH4)( 04)2 12 H2O] indicator solution and 2-3 ml of benzyl alcohol. The resulting mixture is treated with 10.0 mL of standard aqueous 0.100 M silver nitrate solution and then titrated with standard aqueous 0.100 H potassium thiocyanate solution to a brownish-red endpoint. [Pg.106]

Hydrochloric acid Fritted bubbler 0.005 N sodium 10 100 -t-95 Titration with 0.01 Other chlorides... [Pg.182]

Chloride. The chloride concentration is determined by titration with silver nitrate solution. This causes the chloride to be removed from the solution as AgCl, a white precipitate. The endpoint of the titration is detected using a potassium chromate indicator. The excess Ag present after all Cl" has been removed from solution reacts with the chromate to form Ag CrO, an orange-red precipitate. [Pg.656]

Sodium Chloride [25]. Sodium chloride estimation is based on sodium titration. To 20 ml of a 1 1 mixture of toluene (xylene) isopropyl alcohol, add a 1-ml sample of oil-base mud, stirring constantly and 75 to 100 ml of distilled water. Add 8-10 drops of phenolphthalein indicator solution and titrate the mixture with H SO (N/10) until the red (pink) color, if any, disappears. Add 1 ml of potassium chromate to the mixture and titrate with 0.282N AgNO (silver nitrate, 1 ml = 0.001 g chloride ions) until the water portion color changes from yellow to orange. Then... [Pg.662]

Chlorinity When a sample of sea water is titrated with silver nitrate, bromides and iodides, as well as chlorides are precipitated. In calculating the chlorinity (Cl), the entire halogen content is taken as chloride, and chlorinity is defined as the weight in grams of silver required for precipitation of total halogen content per kilogram of sea water, multiplied by 0-328 533. (Chlorinity is always expressed as parts per thousand, using the symbol %o.)... [Pg.364]

Anion exchange resin. Proceed as in the previous experiment using 1.0 g, accurately weighed, of the air-dried strongly basic anion exchanger (e.g. Duolite A113, chloride form). Fill the 250 mL separatory funnel with ca 0.25M sodium nitrate solution, and allow this solution to drop into the column at the rate of about 2 mL per minute. Collect the effluent in a 500 mL conical flask, and titrate with standard 0.1M silver nitrate using potassium chromate as indicator. [Pg.208]

Weigh out accurately about 0.10 g of analytical grade sodium chloride and about 0.20 g of potassium bromide, dissolve the mixture in about 2.0 mL of water and transfer quantitatively to the top of the column with the aid of 0.3 M sodium nitrate. Pass 0.3 M sodium nitrate through the column at a flow rate of about 1 mL per minute and collect the effluent in 10 mL fractions. Transfer each fraction in turn to a conical flask, dilute with an equal volume of water, add 2 drops of 0.2M potassium chromate solution and titrate with standard 0.02M silver nitrate. [Pg.209]


See other pages where Chloride titration with is mentioned: [Pg.372]    [Pg.372]    [Pg.372]    [Pg.372]    [Pg.372]    [Pg.372]    [Pg.372]    [Pg.372]    [Pg.282]    [Pg.534]    [Pg.444]    [Pg.52]    [Pg.47]    [Pg.168]    [Pg.232]    [Pg.436]    [Pg.288]    [Pg.427]    [Pg.413]    [Pg.447]    [Pg.216]    [Pg.25]   
See also in sourсe #XX -- [ Pg.2 , Pg.140 ]




SEARCH



Chloride titrators

Potentiometric titration with benzethonium chloride

Titration with benzethonium chloride

Titration with benzethonium chloride and hydrolysis

Two-phase titration with benzethonium chloride

© 2024 chempedia.info