Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloride salts, removal

The ammonium chloride process, developed by Asahi Glass, is a variation of the basic Solvay process (9—11). It requires the use of soHd sodium chloride but obtains higher sodium conversions (+90%) than does the Solvay process. This is especially important ia Japan, where salt is imported as a soHd. The major difference from the Solvay process is that here the ammonium chloride produced is crystallized by cooling and through the addition of soHd sodium chloride. The resulting mother Hquor is then recycled to dissolve additional sodium chloride. The ammonium chloride is removed for use as rice paddy fertilizer. Ammonia makeup is generally suppHed by an associated synthesis plant. [Pg.524]

Demineralizers are often used to treat raw makeup water or condensate where high purity is required, such as in large central station boHers that operate at high steam pressures. Demineralizers employ a combination of cation and anion exchange to remove additional material, including sodium and ammonium cations. VirtuaHy aH salt anions, such as bicarbonate, sulfate, and chloride, are removed and replaced by hydroxide ions in the demineralizer. [Pg.7]

The reaction can be driven to the tetraalkoxide stage by addition of an amine or ammonia to scavenge the Hberated hydrochloric acid. The amine or ammonium hydrochloride that forms can be filtered from the reaction mass and the tetraalkyl titanate purified by distillation. If the reaction is mn in the starting alcohol as solvent, the chloride salts formed are in a finely divided state and difficult to filter. When the reaction is mn in the presence of an inert hydrocarbon solvent such as heptane or toluene, a much more readily filterable salt is obtained. The solution of cmde tetraalkyl titanate can be distilled to remove solvent and give a pure product (1,2). [Pg.138]

Economic Aspects and Uses. Total world production of potassium products is 29,000,000 tons per year (65). Potassium chloride is removed from brine at Moab, and Wendover, Utah, and at Seades Lake, California. Potassium sulfate is made from Great Salt Lake brine by Great Salt Lake Minerals Corp., which is the largest producer of solar potassium sulfate in the wodd. Combined, these U.S. faciUties stiU produce a relatively small percentage of potash fertilizers in the wodd. Production from the Dead Sea, for example, is 10 times greater than production of potassium from brines in the United States. More than 95% of all the potassium produced is used in fertilizer blends. The remainder is converted to other potassium chemicals for industdal use (see Potassium compounds). [Pg.412]

Because phenols are weak acids, they can be freed from neutral impurities by dissolution in aqueous N sodium hydroxide and extraction with a solvent such as diethyl ether, or by steam distillation to remove the non-acidic material. The phenol is recovered by acidification of the aqueous phase with 2N sulfuric acid, and either extracted with ether or steam distilled. In the second case the phenol is extracted from the steam distillate after saturating it with sodium chloride (salting out). A solvent is necessary when large quantities of liquid phenols are purified. The phenol is fractionated by distillation under reduced pressure, preferably in an atmosphere of nitrogen to minimise oxidation. Solid phenols can be crystallised from toluene, petroleum ether or a mixture of these solvents, and can be sublimed under vacuum. Purification can also be effected by fractional crystallisation or zone refining. For further purification of phenols via their acetyl or benzoyl derivatives (vide supra). [Pg.68]

The condensing steam turbine has a relatively low thermal efficiency because about two-thirds of the steam enthalpy is lost to cooling water in the condenser. Expensive boiler feedwater treatment is required to remove chlorides, salts, and silicates, which can be deposited on the blades causing premature failure. The blades are already under erosion conditions because of water drops present in the condensing steam. Even with these disadvantages, the condensing turbine is still selected, especially in a process that requires very large compressor drivers and relatively low amounts of process steam. [Pg.283]

Certain chemicals (sorbents) have the ability to absorb moisture from a gas they may be either solid or liquid. Performance of a chemical dehumidifi cation device depends on the sorbent used. The sorbent must t>e able to attract and remove the sorbate, such as water, from the gas stream, Stirbems absorb water on the surface of the material by adsorption or by chemically combining with water (absorption). If the unit is regenerative, the process is reversible, allowing water to be removed. This is achieved by a sorbent such as silica gel, alumina gel, activated alumina, lithium chloride salt, lithium chloride solution, glycol solution, or molecular sieves. In the case of nonregenerative equipment, hygroscopic salts such as calcium chloride, urea, or sodium chloride are used. [Pg.724]

Azauridine was also synthesized using the knowledge of the course of alkylation of 6-azauracil 2-methylmercapto derivatives (e.g., Section II,B,4,b). The 1-ribofuranosyl derivative obtained by reaction of the mercury salt of the 2-methylmercapto derivative with tri-O-benzoyl-jS-D-ribofuranosyl chloride on removal of the methyl-mercapto and then benzoyl groups yielded crystalline 6-azauridine, The main difference between uracil and 6-azauracil nucleosides consists in the preparation of cyclic nucleosides. It is known that uridine can be readily converted to cyclic nucleosides by the reaction of 2 (50-O-mesyl derivatives with nucleophilic agents, Analogous... [Pg.216]

A mixture of 20 g of 1. [p.((3.diethylaminoethoxy)phenyl]-1,2-diphenylethanol in 200 cc of ethanol containing an excess of hydrogen chloride was refluxed 3 hours. The solvent and excess hydrogen chloride were removed under vacuum, and the residue was dissolved in a mixture of ethyl acetate and methylene chloride. 1-[p-((3.diethylaminoethoxv)phenyl] -1,2-diphenylethylene hydrochloride was obtained, melting at 148° to 157°C. This hydrochloride salt was treated with N-chlorosuccinimide in dry chloroform under reflux. The product then obtained was converted to the free base and treated with citric acid. The dihydrogen citrate salt of 1-[p-((3-diethylaminoethoxy)phenyl]-1,2-diphenylchloroethylene was obtained, melting at 116.5° to 118°C. [Pg.369]

Water soluble salts that are carried over from the desalter. An effective desalting operation is more important than ever when processing heavy feedstocks to the cat cracker. Chloride salts are usually water soluble and are removed from raw crude in the desalter. However, some of these salts can be carried over with desalted crude. [Pg.67]

Figure 3 shows a flowsheet for plutonium processing at Rocky Flats. Impure plutonium metal is sent through a molten salt extraction (MSE) process to remove americium. The purified plutonium metal is sent to the foundry. Plutonium metal that does not meet foundry requirements is processed further, either through an aqueous or electrorefining process. The waste chloride salt from MSE is dissolved then the actinides are precipitated with carbonate and redissolved in 7f1 HN03 and finally, the plutonium is recovered by an anion exchange process. [Pg.349]

Several other useful modifications of calciothermic reduction have been successfully developed for the preparation of this neodymium-bearing magnetic alloy. One of these is reduction-extraction which involves the reduction of neodymium sesquioxide (Nd203) with calcium in a molten calcium chloride-sodium chloride salt bath at 750 °C and the simultaneous extraction of the reduced metal into a molten neodymium-zinc or neodymium-iron alloy pool. The neodymium-zinc alloy product is treated in vacuum to remove zinc and produce neodymium metal, while the neodymium-iron alloy is itself the end product of... [Pg.384]

Seventeen grams of phenazinone 59 was dissolved in 80ml of phos-phoryl chloride. Phosphorous pentachloride (15.6 g) was added and the mixture stirred for 2 h. The product (chloride salt) was collected by filtration, washed with ether, and dried. This solid was dissolved in 500ml of water, filtered to remove some insoluble tar, and 17.9g of potassium iodide was added to precipitate the iodide. The product was collected by filtration, washed with water, and dried in vacuo to yield 19.9g (71%) of 3-chloro-9-ethylphenazinium iodide (60). [Pg.89]

The hydrogen chloride is removed either by reduced pressure or by salt formation with pyridine or sodium bicarbonate the latter procedure gave high yields of the pure ester. Toy (47) also measured the hydrolysis rates and compared the toxicities of a series of tetraalkyl pyrophosphates. Of these tested, the tetraethyl ester was the most toxic to white mice. [Pg.155]

Campbell and Ottaway [136] also used selective volatilisation of the cadmium analyte to determine cadmium in seawater. They could detect 0.04 pg/1 cadmium (2pg in 50 pi) in seawater. They dried at 100 °C and atomised at 1500 °C with no char step. Cadmium was lost above 350 °C. They could not use ammonium nitrate because the char temperature required to remove the ammonium nitrate also volatilised the cadmium. Sodium nitrate and sodium and magnesium chloride salts provided reduced signals for cadmium at much lower concentrations than their concentration in seawater if the atomisation temperature was in excess of 1800 °C. The determination required lower atomisation temperatures to avoid atomising the salts. Even this left the magnesium interference, which required the method of additions. [Pg.147]

In a 2-1. three-necked flask, fitted with a sealed mechanical stirrer (Note 1), a reflux condenser protected with a calcium chloride tube, and a dropping funnel, is placed 123 g. (1 mole) of nicotinic acid (Note 2). The stirrer is started, and 500 ml. (818 g., 6.9 moles) of distilled thionyl chloride is added in a slow stream over a period of 15-20 minutes (Note 3). After the addition is complete, the mixture is heated on the steam bath with continuous stirring for 1 hour then the reflux condenser is replaced by one set for downward distillation, and the excess thionyl chloride is removed by distillation at reduced pressure as heating on the steam bath is continued (Notes 1 and 3). After most of the thionyl chloride has been distilled, 200 ml. of anhydrous benzene is added, and the benzene is distilled at reduced pressure. An additional 500 ml. of anhydrous benzene is added, then the flask is fitted with a thermometer and a reflux condenser and is placed in an ice-salt bath. The stirrer is started, and 330 g. (2.5 moles) of anhydrous aluminum chloride is added in portions over a period of 1 hour as the internal temperature is held between 5° and 10°. The ice bath is removed, and the flask is permitted to warm to room temperature and is finally healed under reflux for 6 hours. [Pg.4]

Free energy of micellization, 24 130 Free enzyme-catalyzed reactions ionic liquids in, 26 897-898 Free fatty acids, 70 802-804, 825-826 removal of, 70 807 as soap bar additives, 22 742-743 Free-flow agents, in sodium chloride (salt), 22 808... [Pg.381]

A mixture of acetamide (30 g. = 0-5 mole) and bromine (80 g. = 26 c.c.) in a half-litre flask is kept well cooled with water while enough of a solution of 50 g. of potassium hydroxide in 350 c.c. of water is added to change the initially red-brown colour into a pale yellow this requires most of the alkali. The solution is now run from a dropping funnel in an unbroken jet into a solution of 80 g. of potassium hydroxide in 150 c.c. of water, maintained at 70°-75° in a litre flask. The operation lasts for several minutes. Until the reaction mixture becomes colourless (one quarter to half an hour) the temperature is maintained at 70°-75°, and then the methylamine is distilled with steam. An adapter is fixed to the lower end of the condenser and dips 1 cm. below the surface of the liquid in the receiver (100 c.c. of approximately 5 N-hydrochloric acid2). As soon as the liquid which forms in the condenser is no longer alkaline the distillation is discontinued and the contents of the receiver are evaporated to dryness in a porcelain basin on the water bath. The last traces of water are removed by allowing the basin to stand over night in a vacuum desiccator. The dried material is boiled with absolute alcohol, which dissolves the methylamine hydrochloride but not the ammonium chloride with which it is mixed. The clear filtrate obtained when the ammonium chloride is removed by filtration is concentrated to a small volume and the methylamine hydrochloride is allowed to crystallise out in the cold. The salt is filtered with suction, washed with a little alcohol, and dried in a desiccator. Yield 15-20 g. [Pg.152]

Chloride salt (la). The pyridinium mesylate from above was dissolved in 200 ml of methylene chloride, and was shaken with 50 ml of saturated NaCl solution in a separatory funnel for ca 2 min. The methylene chloride phase was removed, the brine phase was washed once with 20 ml of methylene chloride, and the organic phases were combined. This procedure was repeated twice using fresh brine. The methylene chloride phase was filtered and evaporated to dryness, affording the crude chloride salt. Recry-stalllzation of the salt from THE/chloroform (ca. 20 1) gives white plates with mp = 192-193 ... [Pg.51]

In addition to surfactant-stabilized colloids, there has been work on forming metal colloids without stabilizers. Lee et al. have shown that direct reduction of mefal chloride salts in tetrahydrofuran with LiBH4 gives small nanoparticles that can be impregnated onto carbon. No further treatment is required after the removal of the solvent. This route was applied to the preparation of PfRu, PtNi, PtMo, and PtW particles. [Pg.10]

A basic buffer consists of a solution of a weak base and one of its salts, such as a solution of ammonia and ammonium chloride. The weak base, ammonia, removes any added hydrogen ions. The conjugate acid, the ammonium ions from the ammonium chloride salt, replaces any hydrogen ions removed when the alkali was added. [Pg.37]


See other pages where Chloride salts, removal is mentioned: [Pg.932]    [Pg.318]    [Pg.226]    [Pg.531]    [Pg.430]    [Pg.499]    [Pg.10]    [Pg.1089]    [Pg.502]    [Pg.147]    [Pg.1072]    [Pg.1035]    [Pg.297]    [Pg.414]    [Pg.932]    [Pg.299]    [Pg.411]    [Pg.31]    [Pg.541]    [Pg.171]    [Pg.1261]    [Pg.79]    [Pg.92]    [Pg.120]    [Pg.10]    [Pg.4]    [Pg.335]   
See also in sourсe #XX -- [ Pg.611 ]




SEARCH



Chloride removal

Chloride salts

© 2024 chempedia.info