Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium borohydride-calcium chloride

A solution of 0.25 g sodium borohydride in 140 ml of ethanol is added to a stirred solution of 0.56 g of calcium chloride in 60 ml of ethanol at —25°. The vigorously stirred mixture is treated dropwise at —25° over 5 min with 4.87 g of 1 la-hydroxy-5/S-pregnane-3,20-dione in 100 ml of ethanol. After a further 3 hr at —20°, 10 ml of 40% aqueous acetic acid is added and the mixture is evaporated to dryness under vacuum. The residue is dissolved in 150 ml of ether and the ethereal solution is washed with 30 ml of 2 A hydrochloric acid and twice with 30 ml of water and dried over Na2S04. Removal of the solvent gives 4.6 g of crystals, which are recrystallized from 20 ml of ether to yield 2.9 g (60%) of the dihydroxy ketone, mp 182-184° [aj 110° (ethanol). [Pg.97]

B. (3-Bromo-3,3-difluoropropyl)trimethylsilane. A 1-L, four-necked flask is equipped with a mechanical stirrer, thermometer, Claisen adapter, septum inlet, reflux condenser (the top of which is connected to a calcium chloride drying tube), and a solid addition funnel. The flask is charged with (1,3-dibromo-3,3-difluoropropyl)trimethylsilane (78.3 g, 0.25 mol), and anhydrous dimethyl sulfoxide (200 mL), and the solid addition funnel is charged with sodium borohydride (11.5 g, 0.30 mol) (Notes 7 and 8). The stirred solution is warmed to 80°C, and sodium borohydride is added at a rate sufficient to maintain a reaction temperature of 80-90°C (Note 9). Toward the end of the addition, an additional portion of dimethyl sulfoxide (200 mL) is added via syringe to lower the viscosity of the reaction mixture. After the addition is complete, the mixture is cooled in an ice-water bath, diluted with 100 mL of pentane, and cautiously quenched with 12 M hydrochloric acid until no further gas evolution occurs. The mixture is transferred to a separatory funnel and washed with three, 100-mL portions of 5% brine. The pentane extract is dried over calcium chloride and the solvent removed through a 15-cm Vigreux column. Further fractionation yields 41.5 g (72%) of 3-bromo-3,3-difluoropropyltrimethylsilane, bp 139-141 °C (Note 10). [Pg.114]

Palladium catalysts resemble closely the platinum catalysts. Palladium oxide (PdO) is prepared from palladium chloride and sodium nitrate by fusion at 575-600° [29,30]. Elemental palladium is obtained by reduction of palladium chloride with sodium borohydride [27, 31], Supported palladium catalysts are prepared with the contents of 5% or 10% of palladium on charcoal, calcium carbonate and barium sulfate [32], Sometimes a special support can increase the selectivity of palladium. Palladium on strontium carbonate (2%) was successfully used for reduction of just y, (5-double bond in a system of oc, / , y, (5-unsaturated ketone [ii]. [Pg.7]

Palladium catalysts are more often modified for special selectivities than platinum catalysts. Palladium prepared by reduction of palladium chloride with sodium borohydride Procedure 4, p. 205) is suitable for the reduction of unsaturated aldehydes to saturated aldehydes [i7]. Palladimn on barium sulfate deactivated with sulfur compounds, most frequently the so-called quinoline-5 obtained by boiling quinoline with sulfur [34], is suitable for the Rosenmund reduction [i5] (p. 144). Palladium on calcium carbonate deactivated by lead acetate Lindlar s catalyst) is used for partial hydrogenation of acetylenes to cw-alkenes [36] (p. 44). [Pg.7]

In aqueous solutions, calcium chloride undergoes double decomposition reactions with a number of soluble salts of other metals to form precipitates of insoluble calcium salts. For example, mixing solutions of calcium chloride with sodium carbonate, sodium tungstate and sodium molybdate solutions precipitates the carbonates, tungstates, and molybdates of calcium, respectively. Similar precipitation reactions occur with carboxylic acids or their soluble salt solutions. CaCb forms calcium sulfide when H2S is passed through its solution. Reaction with sodium borohydride produces calcium borohydride, Ca(BH4)2. It forms several complexes with ammonia. The products may have compositions CaCl2 2NH3, CaCb dNHs, and CaCb SNHs. [Pg.163]

Numerous methods for the synthesis of salicyl alcohol exist. These involve the reduction of salicylaldehyde or of salicylic acid and its derivatives. The alcohol can be prepared in almost theoretical yield by the reduction of salicylaldehyde with sodium amalgam, sodium borohydride, or lithium aluminum hydride by catalytic hydrogenation over platinum black or Raney nickel or by hydrogenation over platinum and ferrous chloride in alcohol. The electrolytic reduction of salicylaldehyde in sodium bicarbonate solution at a mercury cathode with carbon dioxide passed into the mixture also yields saligenin. It is formed by the electrolytic reduction at lead electrodes of salicylic acids in aqueous alcoholic solution or sodium salicylate in the presence of boric acid and sodium sulfate. Salicylamide in aqueous alcohol solution acidified with acetic acid is reduced to salicyl alcohol by sodium amalgam in 63% yield. Salicyl alcohol forms along with -hydroxybenzyl alcohol by the action of formaldehyde on phenol in the presence of sodium hydroxide or calcium oxide. High yields of salicyl alcohol from phenol and formaldehyde in the presence of a molar equivalent of ether additives have been reported (60). Phenyl metaborate prepared from phenol and boric acid yields salicyl alcohol after treatment with formaldehyde and hydrolysis (61). [Pg.293]

Tctrahydrotellurophene1 Sodium borohydride is added to a boiling mcthanolic solution of tetrahydro-tellurophenc Te,Te-diiodide until the orange color disappears. The solution is filtered and the filtrate poured into 1 / of water. The mixture is extracted with diethyl ether, the extract is dried with anhydrous calcium chloride, and the dried mixture filtered. The filtrate is evaporated. The heavy, yellow oily residue that has a persistent odor is distilled b.p. 165-167°. [Pg.432]

REDUCTION, REAGENTS Bis(N-methylpi-perazinyl)aluminum hydride. Borane-Di-methyl sulfide. Borane-Tetrahydrofurane. Borane-Pyridine. n-Butyllithium-Diisobu-tylaluminum hydride. Calcium-Amines. Diisobutylaluminum hydride. 8-Hydroxy-quinolinedihydroboronite. Lithium aluminum hydride. Lithium 9-boratabicy-clo[3.3.1]nonane. Lithium n-butyldiisopro-pylaluminum hydride. Lithium tri-j c-butylborohydride. Lithium triethylborohy-dride. Monochloroalane. Nickel boride. 2-Phenylbenzothiazoline. Potassium 9-(2,3-dimethyl-2-butoxy)-9-boratabicy-clo[3.3.1]nonane. Raney nickel. Sodium bis(2-methoxyethoxy)aluminum hydride. Sodium borohydride. Sodium borohy-dride-Nickel chloride. Sodium borohy-dride-Praeseodymium chloride. So-dium(dimethylamino)borohydride. Sodium hydrogen telluride. Thexyl chloroborane-Dimethyl sulfide. Tri-n-butylphosphine-Diphenyl disulfide. Tri-n-butyltin hydride. Zinc-l,2-Dibromoethane. Zinc borohydride. [Pg.583]

Preparation. Calcium borohydride can be obtained in solid form by the reaction of anhydrous calcium chloride and sodium borohydride in THF, 4-8 hrs., thorough stirring. After removal of sodium chloride by centrifugation and evaporation of solvent a crystalline addition compound of calcium borohydride and THF is obtained. The reagent can be prepared in situ by the reaction of calcium iodide and sodium borohydride in THF. [Pg.305]

Reducing agents Aluminum hydride. Bis-3-methyl-2-butylborane. n-Butyllithium-Pyridine. Calcium borohydride. Chloroiridic acid. Chromous acetate. Chromous chloride. Chromous sulfate. Copper chromite. Diborane. Diborane-Boron trifluoride. Diborane-Sodium borohydride. Diethyl phosphonate. Diimide. Diisobutylaluminum hydride. Dimethyl sulfide. Hexamethylphosphorous triamide. Iridium tetrachloride. Lead. Lithium alkyla-mines. Lithium aluminum hydride. Lithium aluminum hydride-Aluminum chloride. Lithium-Ammonia. Lithium diisobutylmethylaluminum hydride. Lithium-Diphenyl. Lithium ethylenediamine. Lithium-Hexamethylphosphoric triamide. Lithium hydride. Lithium triethoxyaluminum hydride. Lithium tri-/-butoxyaluminum hydride. Nickel-aluminum alloy. Pyridine-n-Butyllithium. Sodium amalgam. Sodium-Ammonia. Sodium borohydride. Sodium borohydride-BFs, see DDQ. Sodium dihydrobis-(2-methoxyethoxy) aluminate. Sodium hydrosulflte. Sodium telluride. Stannous chloride. Tin-HBr. Tri-n-butyltin hydride. Trimethyl phosphite, see Dinitrogen tetroxide. [Pg.516]

Selective reduction of aldehydes in the presence of ketones can be effected with tetra-n-butylammonium triacetoxyborohydride and other reagents. Although lithium aluminium hydride is used most commonly for the reduction of carboxylic esters, sodium borohydride can provide some useful selectivity and its reactivity is enhanced in the presence of metal salts. For example, reduction of carboxylic esters in the presence of carboxylic amides is possible using sodium borohydride and calcium chloride. [Pg.439]

Related Reagents. Calcium Hydride Iron(III) Chloride-Sodium Hydride Lithium Aluminum Hydride Potassium Hydride Potassium Hydride-5-Butyllithium-(V,(V,(V, (V -Tetra-methylethylenediamine Potassium Hydride-Hexamethylphos-phoric Triatnide Sodium Borohydride Sodium Hydride-copper(II) Acetate-Sodium t-Pentoxide Sodium Hydride-nickel(II) Acetate-Sodium t-Pentoxide Sodium Hydride-palladium(II) Acetate-Sodium t-Pentoxide Tris(cyclopenta-dienyl)lanthanum-Sodium Hydride Lithium Hydride Sodium Telluride. [Pg.444]

Ester III-25 was reduced to alcohol III-26 using lithium borohydride [92]. Alternatively, alcohol III-26 could also be prepared using sodium borohydride and calcium chloride, but a with longer reaction time (1-2 days) [93-95]. When lithium aluminium hydride was used, competitive reduction of the lactam was also observed, even at low temperatures. [Pg.120]

Procedure 5.-[243] Sodium borohydride (447 mg, 11.34 mmol, 4 equiv) was added to a solution of ester III-25 (1.10 g, 2.83 mmol, 1 equiv) and calcium chloride (649 mg, 5.67 mmol, 2 equiv) in a mixture of THF (38 mL) and Et20 (28 mL) at 0 °C. The reaction was allowed to warm up to room temperature and was left to stir for 1 day. Then, an appropriate amount of water necessary to react with the NaBH4 were added and as was MgS04-7H20. The mixture was stirred until the evolution of gas ceased, and was then filtered through a path of Celite. After the evaporation of the solvent, III-26 was obtained as a colourless oil. [Pg.165]

Monodisperse particles present the advantage of uniform active site distribution and can be considered as models for heterogeneous catalytic reactions. Monodisperse metals, metal oxides or metal borides can now be easily obtained using microemulsions, vesicles, polymers or normal micelles (refs. 1-4). Microemulsions were used to obtain monodisperse particles of platinum (refs. 5-7), palladium (refs. 5,6), rhodium (refs. 5,6), iridium (ref. 5) and gold (ref. 8) by reducing the precursor metal ions with hydrogen, hydrazine, sodium borohydride or solvated electrons. Monodisperse nickel boride (refs. 1,9-12), cobalt boride (refs. 1,10,13-17), nickel-cobalt boride (refs. 1,10,15-17), and mixtures of iron boride and iron oxides (refs. 1,18) were prepared by sodium borohydride reduction of the precursor metal ions. Iron oxides (ref. 19), magnetite (ref. 20), calcium carbonate (ref. 21) and silver chloride (ref. 22) were obtained by precipitation reactions. [Pg.705]

Fluoromethyl phenyl sulfone, 135 Chlorohydrins Calcium borohydride, 62 Lithium, 157 Sodium nitrite, 282 Titanium(IV) chloride-1,8-Diazabi-cyclo[5.4.0]undecene-7, 309 Iodohydrins... [Pg.390]


See other pages where Sodium borohydride-calcium chloride is mentioned: [Pg.326]    [Pg.327]    [Pg.327]    [Pg.326]    [Pg.327]    [Pg.327]    [Pg.293]    [Pg.288]    [Pg.537]    [Pg.159]    [Pg.794]    [Pg.370]    [Pg.132]    [Pg.418]    [Pg.610]    [Pg.343]    [Pg.82]    [Pg.536]    [Pg.500]    [Pg.418]    [Pg.610]    [Pg.663]    [Pg.422]    [Pg.82]    [Pg.500]    [Pg.29]    [Pg.196]    [Pg.536]    [Pg.654]    [Pg.421]    [Pg.537]    [Pg.1585]    [Pg.5585]    [Pg.198]   
See also in sourсe #XX -- [ Pg.327 ]




SEARCH



Calcium chloride

Calcium sodium

Sodium calcium chloride

© 2024 chempedia.info