Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactants colloid stability

Colloidal Stabilization. Surfactant adsorption reduces soil—substrate interactions and faciUtates soil removal. For a better understanding of these interactions, a consideration of coUoidal forces is required. [Pg.532]

Surfactants. These enhance the colloid stability against mechanical and chemical stresses, help to disperse fillers, aid in wetting and enhance foaming. The most common surfactants are dodecylbenzene sulphonates and potassium oleate. [Pg.655]

As alternatives to amphiphilic betaines, a wide range of cationic, anionic, and non-ionic surfactants including environmentally benign sugar soaps have been successfully used as colloidal stabilizers [201]. Electrochemical reduction of the metal salts provides a very clean access to water soluble nanometal colloids [192]. [Pg.29]

The procedure chosen for the preparation of lipid complexes of AmB was nanoprecipitation. This procedure has been developed in our laboratory for a number of years and can be applied to the formulation of a number of different colloidal systems liposomes, microemulsions, polymeric nanoparticles (nanospheres and nanocapsules), complexes, and pure drug particles (14-16). Briefly, the substances of interest are dissolved in a solvent A and this solution is poured into a nonsolvent B of the substance that is miscible with the solvent A. As the solvent diffuses, the dissolved material is stranded as small particles, typically 100 to 400 nm in diameter. The solvent is usually an alcohol, acetone, or tetrahydrofuran and the nonsolvent A is usually water or aqueous buffer, with or without a hydrophilic surfactant to improve colloid stability after formation. Solvent A can be removed by evaporation under vacuum, which can also be used to concentrate the suspension. The concentration of the substance of interest in the organic solvent and the proportions of the two solvents are the main parameters influencing the final size of the particles. For liposomes, this method is similar to the ethanol injection technique proposed by Batzii and Korn in 1973 (17), which is however limited to 40 mM of lipids in ethanol and 10% of ethanol in final aqueous suspension. [Pg.95]

In this situation, the equilibrium thickness at any given height h is determined by the balance between the hydrostatic pressure in the liquid (hpg) and the repulsive pressure in the film, that is n = hpg. Cyril Isenberg gives many beautiful pictures of soap films of different geometries in his book The Science of Soap Films and Soap Bubbles (1992). Sir Isaac Newton published his observations of the colours of soap bubbles in Opticks (1730). This experimental set-up has been used to measure the interaction force between surfactant surfaces, as a function of separation distance or film thickness. These forces are important in stabilizing surfactant lamellar phases and in cell-cell interactions, as well as in colloidal interactions generally. [Pg.158]

Mixed surfactant systems are frequently used in practice. For example, latexes are often prepared in the presence of an anionic surfactant. Later, a nonionic surfactant may be added in order to enhance the colloidal stability of the system. [Pg.225]

Once the dirty spot is removed from the substrate being laundered, it is important that it not be redeposited. Solubilization of the detached material in micelles of surfactant has been proposed as one mechanism that contributes to preventing the redeposition of foreign matter. Any process that promotes the stability of the detached dirt particles in the dispersed form will also facilitate this. We see in Chapter 11 how electrostatic effects promote colloidal stability. The adsorption of ions —especially amphipathic surfactant ions —onto the detached matter assists in blocking redeposition by stabilizing the dispersed particles. Materials such as carbox-ymethylcellulose are often added to washing preparations since these molecules also adsorb on the detached dirt particles and interfere with their redeposition. [Pg.340]

We have already seen from Example 10.1 that van der Waals forces play a major role in the heat of vaporization of liquids, and it is not surprising, in view of our discussion in Section 10.2 about colloid stability, that they also play a significant part in (or at least influence) a number of macroscopic phenomena such as adhesion, cohesion, self-assembly of surfactants, conformation of biological macromolecules, and formation of biological cells. We see below in this chapter (Section 10.7) some additional examples of the relation between van der Waals forces and macroscopic properties of materials and investigate how, as a consequence, measurements of macroscopic properties could be used to determine the Hamaker constant, a material property that represents the strength of van der Waals attraction (or repulsion see Section 10.8b) between macroscopic bodies. In this section, we present one illustration of the macroscopic implications of van der Waals forces in thermodynamics, namely, the relation between the interaction forces discussed in the previous section and the van der Waals equation of state. In particular, our objective is to relate the molecular van der Waals parameter (e.g., 0n in Equation (33)) to the parameter a that appears in the van der Waals equation of state ... [Pg.477]

Two kinds of barriers are important for two-phase emulsions the electric double layer and steric repulsion from adsorbed polymers. An ionic surfactant adsorbed at the interface of an oil droplet in water orients the polar group toward the water. The counterions of the surfactant form a diffuse cloud reaching out into the continuous phase, the electric double layer. When the counterions start ovedapping at the approach of two droplets, a repulsion force is experienced. The repulsion from the electric double layer is famous because it played a decisive role in the theory for colloidal stability that is called DLVO, after its originators Derjaguin, Landau, Vervey, and Overbeek (14,15). The theory provided substantial progress in the understanding of colloidal stability, and its treatment dominated the colloid science literature for several decades. [Pg.199]

Some interesting results have recently become available for the effects of a range of n-alkyl triethyl ammonium bromides upon the mechanical stability of natural rubber latex. The number of carbon atoms in the alkyl group varied from 6 to 18. Figure 6 summarises the results. It is usually believed that the addition of cationic surfactants to an anionic latex such as natural rubber latex invariably leads to a reduction in colloid stability, the effect being attributed to adsorption of the cations with consequent partial neutralisation of the particle charge and reduction of the counterion cloud surrounding the particles. [Pg.184]

Sensor fabrication occurs in two steps. The first step is the immobilization of GOx on the surface of the nanotube. This is accomplished by adding GOx to a solution of surfactant stabilized nanotubes and dialyzing away the surfactant. Dialysis is an ideal method for assembling enzymes on a nanotube surface, because the method allows retention of enzyme activity while simultaneously maintaining nanotube colloidal stability. The resulting GOx-S WNT solution exhibits a shift in the nanotube fluorescence indicative of the enzyme layer being less tightly packed around the nanotube than the surfactant layer. The second step is addition of ferricyanide to the GOx-SWNT solution. Adsorption of ferricyanide to the nanotube surface... [Pg.322]

The position of the ASV peak on the voltage scan reflects the nature of the ion being reduced, and for complex ions the peak position moves to more negative potentials as stability increases. In some cases formation of intermediate valency states (e.g. in chloride solution, Cu2+ — Cu+ — Cu°) results in split peaks. Adsorption of species (e.g. colloidal particles, surfactants) on the mercury electrode also causes peak movement (generally in an anodic direction). [Pg.26]


See other pages where Surfactants colloid stability is mentioned: [Pg.397]    [Pg.33]    [Pg.374]    [Pg.2]    [Pg.82]    [Pg.27]    [Pg.402]    [Pg.166]    [Pg.350]    [Pg.119]    [Pg.240]    [Pg.253]    [Pg.256]    [Pg.18]    [Pg.27]    [Pg.58]    [Pg.332]    [Pg.78]    [Pg.79]    [Pg.151]    [Pg.178]    [Pg.364]    [Pg.26]    [Pg.228]    [Pg.61]    [Pg.577]    [Pg.765]    [Pg.340]    [Pg.565]    [Pg.322]    [Pg.144]    [Pg.227]    [Pg.277]    [Pg.332]    [Pg.77]    [Pg.218]    [Pg.88]   
See also in sourсe #XX -- [ Pg.448 ]




SEARCH



Colloid stability

Colloid stability, stabilization

Colloid stabilizers

Colloidal stabilization

Colloidal stabilizers

Colloidal stabilizing

Colloidal surfactants

Stabilization surfactants

Stabilizer surfactants

Surfactant stabilized

Surfactants stability

© 2024 chempedia.info