Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral CSPs

Different classifications for the chiral CSPs have been described. They are based on the chemical structure of the chiral selectors and on the chiral recognition mechanism involved. In this chapter we will use a classification based mainly on the chemical structure of the selectors. The selectors are classified in three groups (i) CSPs with low-molecular-weight selectors, such as Pirkle type CSPs, ionic and ligand exchange CSPs, (ii) CSPs with macrocyclic selectors, such as CDs, crown-ethers and macrocyclic antibiotics, and (iii) CSPs with macromolecular selectors, such as polysaccharides, synthetic polymers, molecular imprinted polymers and proteins. These different types of CSPs, frequently used for the analysis of chiral pharmaceuticals, are discussed in more detail later. [Pg.456]

Packed column SFC is now rapidly replacing many HPLC methods for chiral resolution [152], These CSPs are coated on the silica gel, like the CSPs for HPLC [150,153]. Besides, chiral resolutions on capillary chiral CSPs (Table 11) have also been reported. Finding the best combination of chiral stationary and mobile phases can be time-consuming. CHIRBASE (www.chirbase.u-... [Pg.92]

However, the real potential of enantioselective chromatography for the preparative separation of optical isomers was definitely established in 1973 by Hesse and Hagel who introduced fully acetylated cellulose (triacetylcellulose) as a new efficient chiral CSP [14]. They successfully achieved the preparative separation of the enantiomers of various chiral compounds. For many years, triacetylcellulose was practically the only chiral stationary phase available for preparative separations and it has been used for the chromatographic resolution of a broad variety of chiral molecules [1-3, 15, 16]. [Pg.157]

Cyclodextrin stationary phases utilize cyclodextrins bound to a soHd support in such a way that the cyclodextrin is free to interact with solutes in solution. These bonded phases consist of cyclodextrin molecules linked to siUca gel by specific nonhydrolytic silane linkages (5,6). This stable cyclodextrin bonded phase is sold commercially under the trade name Cyclobond (Advanced Separation Technologies, Whippany, New Jersey). The vast majority of all reported hplc separations on CD-bonded phases utilize this media which was also the first chiral stationary phase (csp) developed for use in the reversed-phase mode. [Pg.97]

HPLC separations are one of the most important fields in the preparative resolution of enantiomers. The instrumentation improvements and the increasing choice of commercially available chiral stationary phases (CSPs) are some of the main reasons for the present significance of chromatographic resolutions at large-scale by HPLC. Proof of this interest can be seen in several reviews, and many chapters have in the past few years dealt with preparative applications of HPLC in the resolution of chiral compounds [19-23]. However, liquid chromatography has the attribute of being a batch technique and therefore is not totally convenient for production-scale, where continuous techniques are preferred by far. [Pg.4]

The type of CSPs used have to fulfil the same requirements (resistance, loadabil-ity) as do classical chiral HPLC separations at preparative level [99], although different particle size silica supports are sometimes needed [10]. Again, to date the polysaccharide-derived CSPs have been the most studied in SMB systems, and a large number of racemic compounds have been successfully resolved in this way [95-98, 100-108]. Nevertheless, some applications can also be found with CSPs derived from polyacrylamides [11], Pirkle-type chiral selectors [10] and cyclodextrin derivatives [109]. A system to evaporate the collected fractions and to recover and recycle solvent is sometimes coupled to the SMB. In this context the application of the technique to gas can be advantageous in some cases because this part of the process can be omitted [109]. [Pg.8]

From the pioneering studies of Ito et al. [117], CCC has been mainly used for the separation and purification of natural products, where it has found a large number of applications [114, 116, 118, 119]. Moreover, the potential of this technique for preparative purposes can be also applied to chiral separations. The resolution of enantiomers can be simply envisaged by addition of a chiral selector to the stationary liquid phase. The mixture of enantiomers would come into contact with this liquid CSP, and enantiodiscrimination might be achieved. However, as yet few examples have been described in the literature. [Pg.10]

Although some applications for preparative-scale separations have already been reported [132] and the first commercial systems are being developed [137, 138], examples in the field of the resolution of enantiomers are still rare. The first preparative chiral separation published was performed with a CSP derived from (S -N-(3,5-dinitrobenzoyl)tyrosine covalently bonded to y-mercaptopropyl silica gel [21]. A productivity of 510 mg/h with an enantiomeric excess higher than 95% was achieved for 6 (Fig. 1-3). [Pg.12]

Examples with other Pirkle-type CSPs have also been described [139, 140]. In relation to polysaccharides coated onto silica gel, they have shown long-term stability in this operation mode [141, 142], and thus are also potentially good chiral selectors for preparative SFC [21]. In that context, the separation of racemic gliben-clamide analogues (7, Fig. 1-3) on cellulose- and amylose-derived CSPs was described [143]. [Pg.12]

Gas chromatography (GC) has also been used for preparative purposes, but is restricted to relatively volatile racemates such as anesthetics, pheromones or monoterpenes and, therefore, very few applications are reported. Nevertheless, in the cases to which GC may be applied, it could be considered as an economical alternative to HPLC. Most of the resolutions of enantiomers were performed on cyclodex-trin-derived CSPs [109, 144-153], and only on very few occasions were other chiral selectors used [153]. [Pg.13]

Enantiomeric separations have become increasingly important, especially in the pharmaceutical and agricultural industries as optical isomers often possess different biological properties. The analysis and preparation of a pure enantiomer usually involves its resolution from the antipode. Among all the chiral separation techniques, HPLC has proven to be the most convenient, reproducible and widely applicable method. Most of the HPLC methods employ a chiral selector as the chiral stationary phase (CSP). [Pg.24]

Table 2-2. The relative strength of potential interactions between glycopeptide CSPs and chiral analytes. Table 2-2. The relative strength of potential interactions between glycopeptide CSPs and chiral analytes.
The enantioselectivity of the macrocyclic CSPs are different in each of the operating modes, probably because of different separation mechanisms functioning in the different solvent modes. The possible chiral recognition mechanisms for three mobile phase compositions on glycopeptide phases are listed in Table 2-3 in descending order of strength. [Pg.29]

When analytes lack the selectivity in the new polar organic mode or reversed-phase mode, typical normal phase (hexane with ethanol or isopropanol) can also be tested. Normally, 20 % ethanol will give a reasonable retention time for most analytes on vancomycin and teicoplanin, while 40 % ethanol is more appropriate for ristocetin A CSP. The hexane/alcohol composition is favored on many occasions (preparative scale, for example) and offers better selectivity for some less polar compounds. Those compounds with a carbonyl group in the a or (3 position to the chiral center have an excellent chance to be resolved in this mode. The simplified method development protocols are illustrated in Fig. 2-6. The optimization will be discussed in detail later in this chapter. [Pg.38]

Each glycopeptide CSP has unique selectivity as well as complementary characteristics, and a considerable number of racemates have been resolved on all three of them. Interestingly, most of the resolved enantiomers have the same retention order on these macrocyclic CSPs. When they are mixed or coupled with each other, the selectivity on one CSP will not be canceled by another. Even if some compounds may not have the same retention order, the complementary effects will result in an identifiable selectivity. Therefore, the coupled chiral columns can be used as a screening tool and save chromatographers substantial time in method development. [Pg.40]

Proteins. A chiral stationary phase with immobilized a -acid glycoprotein on silica beads was introduced by Hermansson in 1983 [18, 19]. Several other proteins such as chicken egg albumin (ovalbumin), human serum albumin, and cellohy-drolase were also used later for the preparation of commercial CSPs. Their selectivity is believed to occur as a result of excess of dispersive forces acting on the more retained enantiomer [17]. These separation media often exhibit only modest loading capacity. [Pg.58]

Small chiral molecules. These CSPs were introduced by Pirkle about two decades ago [31, 32]. The original brush -phases included selectors that contained a chiral amino acid moiety carrying aromatic 7t-electron acceptor or tt-electron donor functionality attached to porous silica beads. In addition to the amino acids, a large variety of other chiral scaffolds such as 1,2-disubstituted cyclohexanes [33] and cinchona alkaloids [34] have also been used for the preparation of various brush CSPs. [Pg.59]

The majority of the original chiral selectors for brush-type CSPs were derived from natural chiral compounds. Selectors prepared from amino acids, such as phenyl... [Pg.59]

Another important issue that must be considered in the development of CSPs for preparative separations is the solubility of enantiomers in the mobile phase. For example, the mixtures of hexane and polar solvents such as tetrahydrofuran, ethyl acetate, and 2-propanol typically used for normal-phase HPLC may not dissolve enough compound to overload the column. Since the selectivity of chiral recognition is strongly mobile phase-dependent, the development and optimization of the selector must be carried out in such a solvent that is well suited for the analytes. In contrast to analytical separations, separations on process scale do not require selectivity for a broad variety of racemates, since the unit often separates only a unique mixture of enantiomers. Therefore, a very high key-and-lock type selectivity, well known in the recognition of biosystems, would be most advantageous for the separation of a specific pair of enantiomers in large-scale production. [Pg.61]

In order to perform such a correlation, our library was screened using a reciprocal CSP with an arbitrary bound chiral target (L)-(3,5-dinitrobenzoyl) leucine (Fig. 3-11). [Pg.78]


See other pages where Chiral CSPs is mentioned: [Pg.263]    [Pg.264]    [Pg.286]    [Pg.289]    [Pg.404]    [Pg.263]    [Pg.264]    [Pg.286]    [Pg.289]    [Pg.404]    [Pg.441]    [Pg.4]    [Pg.5]    [Pg.24]    [Pg.25]    [Pg.30]    [Pg.46]    [Pg.46]    [Pg.48]    [Pg.49]    [Pg.50]    [Pg.51]    [Pg.53]    [Pg.55]    [Pg.56]    [Pg.58]    [Pg.58]    [Pg.58]    [Pg.59]    [Pg.59]    [Pg.60]    [Pg.61]    [Pg.71]    [Pg.73]   
See also in sourсe #XX -- [ Pg.456 ]




SEARCH



CSPs

Chiral Crown Ether CSPs

Chiral Stationary Phases (CSPs

Chiral Stationary Phases (CSPs Amylose

Chiral Stationary Phases (CSPs cyclodextrins from

Chiral Stationary Phases (CSPs separations

Chiral separation, direct using CSPs

Chiral separations CSPs)

Chiral stationary phases (CSP

Other Chiral GC CSPs

Pirkle-type CSPs chiral recognition mechanisms

© 2024 chempedia.info