Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemisorption metallic catalysts

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

Catalysts commonly lose activity in operation as a result of accumulation of materials from the reactant stream. Catalyst poisoning is a chemical phenomenon, A catalyst poison is a component such as a feed impurity that as a result of chemisorption, even in smaH amounts, causes the catalyst to lose a substantial fraction of its activity. For example, sulfur compounds in trace amounts poison metal catalysts. Arsenic and phosphoms compounds are also poisons for a number of catalysts. Sometimes the catalyst surface has such a strong affinity for a poison that it scavenges it with a high efficiency. The... [Pg.173]

In this article, we will discuss the use of physical adsorption to determine the total surface areas of finely divided powders or solids, e.g., clay, carbon black, silica, inorganic pigments, polymers, alumina, and so forth. The use of chemisorption is confined to the measurements of metal surface areas of finely divided metals, such as powders, evaporated metal films, and those found in supported metal catalysts. [Pg.737]

For a supported metal catalyst, the BET method yields the total surface area of support and metal. If we perform our measurements in the chemisorption domain, for example with H2 or CO at room temperature, adsorption is limited to the metallic phase, providing a way to determine the dispersion of the supported phase. [Pg.187]

The Ru metal area was determined by volumetric H2 chemisorption in the quartz U-tube of an Autosorb 1-C set-up (Quantachrome) following the procedure described in ref. [16]. Prior to chemisorption, the catalysts were activated by passing 80 Nml/min high-purity synthesis gas (Pnj / Phj -1/3) from a connected feed system through the U-tube and heating to 673 K for alkali-promoted catalysts or to 773 K for alkali-free catalysts with a heating rate of 1 K/min. The BET area was measured by static N2 physisorption in the same set-up. [Pg.318]

Barometric chemisorption. Chemisorption on catalysts is measured routinely by the barometric method. The equipment is very similar to that commonly used in texture determination by physical adsorption (see Section 3.6.2), except that for chemisorption measurements facilities for pretreatment of the samples should be present. In particular for metal catalysts often the catalyst is received in a partly or fully oxidized form and, as a consequence, reduction is required when one wants to measure the amount of active sites. Moreover, during storage adsorption of various molecules might occur and evacuation is... [Pg.105]

As always in chemisorption measurements, pretreatment of the samples should be done with care. For metal catalysts prepared from oxides in particular this is experimentally troublesome because a reduction step is always needed in the preparation of the metal catalyst. Hydrogen or hydrogen diluted with an inert gas is usually used for the reduction but it is difficult to remove adsorbed H2 from the surface completely. So, after reduction the metal surfaces contains (unknown) amounts of H atoms, which are strongly retained by the surface and, as a consequence, it is not easy to find reliable values for the dispersion from H2 chemisorption data. [Pg.107]

The articles by J. R. Anderson, J. H. Sinfelt, and R. B. Moyes and P. B. Wells, on the other hand, deal with a classical field, namely hydrocarbons on metals. The pattern of modem wTork here still very much reflects the important role in the academic studies of deuterium exchange reactions and the mechanisms advanced by pioneers like Horiuti and Polanyi, the Farkas brothers, Rideal, Tw igg, H. S. Taylor, and Turkevich. Using this method, Anderson takes ultrathin metal films with their separated crystallites as idealized models for supported metal catalysts. Sinfelt is concerned with hydrogcnolysis on supported metals and relates the activity to the percentage d character of the metallic bond. Moyes and Wells deal with the modes of chemisorption of benzene, drawing on the results of physical techniques and the ideas of the organometallic chemists in their discussions. [Pg.362]

Another important factor affecting carbon deposition is the catalyst surface basicity. In particular, it was demonstrated that carbon formation can be diminished or even suppressed when the metal is supported on a metal oxide carrier with a strong Lewis basicity [47]. This effect can be attributed to the fact that high Lewis basicity of the support enhances the C02 chemisorption on the catalyst surface resulting in the removal of carbon (by surface gasification reactions). According to Rostrup-Nielsen and Hansen [12], the amount of carbon deposited on the metal catalysts decreases in the following order ... [Pg.60]

Poisoning is caused by chemisorption of compounds in the process stream these compounds block or modify active sites on the catalyst. The poison may cause changes in the surface morphology of the catalyst, either by surface reconstruction or surface relaxation, or may modify the bond between the metal catalyst and the support. The toxicity of a poison (P) depends upon the enthalpy of adsorption for the poison, and the free energy for the adsorption process, which controls the equilibrium constant for chemisorption of the poison (KP). The fraction of sites blocked by a reversibly adsorbed poison (0P) can be calculated using a Langmuir isotherm (equation 8.4-23a) ... [Pg.215]

The use of dispersed or immobilized transition metals as catalysts for partial hydrogenation reactions of alkynes has been widely studied. Traditionally, alkyne hydrogenations for the preparation of fine chemicals and biologically active compounds were only performed with heterogeneous catalysts [80-82]. Palladium is the most selective metal catalyst for the semihydrogenation of mono-substituted acetylenes and for the transformation of alkynes to ds-alkenes. Commonly, such selectivity is due to stronger chemisorption of the triple bond on the active center. [Pg.238]

Grenoble and coworkers229 reported an important influence of the support on the water-gas shift activity of various metal catalysts. For example, the rate increased an order of magnitude when Pt was supported on alumina versus silica. Turnover numbers for alumina-supported metal catalysts decreased in the order Cu, Re, Co, Ru, Ni, Pt, Os, Au, Fe, Pd, Rh, and Ir, whereby the activity varied by 3 orders of magnitude, suggesting a correlation between activity of the metal and the heat of adsorption. To describe these differences in activity, the authors used a bifunctional model, involving chemisorption of water on alumina and CO on the metal, followed by association of the CO with the water to form a formic acid-like formate species, with subsequent decomposition via dehydrogenation on the metal sites (Scheme 55). [Pg.181]

A few years later, Davison et al (1988) applied the ANG model of chemisorption to supported-metal catalysts. The key parameters were found to be the metal film thickness and the metal-support bond strength. Related papers followed, studying impurity effects (Zhang and Wei (1991), Sun et al (1994b)) and variation with metal substrate (Xie et al (1992)). [Pg.83]

A feature common to both ir complex mechanisms is the nature of the second reagent in the exchange reaction [Eqs. (11), (12a), (12b)], namely heavy water or deuterium gas. Water is generally preferred in exchange reactions as it does not produce hydrogenated by-products. The important aspect concerning water and deuterium gas is the rapid exchange between these compounds on transition metal catalysts, which has been explained by dissociative chemisorption. [Pg.105]

In many catalytic systems, nanoscopic metallic particles are dispersed on ceramic supports and exhibit different stmctures and properties from bulk due to size effect and metal support interaction etc. For very small metal particles, particle size may influence both geometric and electronic structures. For example, gold particles may undergo a metal-semiconductor transition at the size of about 3.5 nm and become active in CO oxidation [10]. Lattice contractions have been observed in metals such as Pt and Pd, when the particle size is smaller than 2-3 nm [11, 12]. Metal support interaction may have drastic effects on the chemisorptive properties of the metal phase [13-15]. Therefore the stmctural features such as particles size and shape, surface stmcture and configuration of metal-substrate interface are of great importance since these features influence the electronic stmctures and hence the catalytic activities. Particle shapes and size distributions of supported metal catalysts were extensively studied by TEM [16-19]. Surface stmctures such as facets and steps were observed by high-resolution surface profile imaging [20-23]. Metal support interaction and other behaviours under various environments were discussed at atomic scale based on the relevant stmctural information accessible by means of TEM [24-29]. [Pg.474]

The use of CO as a chemical probe of the nature of the molecular interactions with the surface sites of metallic catalysts [6] was the first clear experimental example of the transposition to surface science and in particular to chemisorption of the concepts of coordination chemistry [1, 2, 5], In fact the Chatt-Duncanson model [7] of coordination of CO, olefins, etc. to transition metals appeared to be valid also for the interactions of such probes on metal surfaces. It could not fit with the physical approach to the surface states based on solid state band gap theory [8], which was popular at the end of 1950, but at least it was a simple model for the evidence of a localized process of chemical adsorption of molecules such as olefins, CO, H, olefins, dienes, aromatics, and so on to single metal atoms on the surfaces of metals or metal oxides [5]. [Pg.4]

EM techniques provide important information in the characterization of the dispersion of metallic catalysts. Surface areas of catalysts are measured by the standard BET method described previously. An isotherm is produced using nitrogen as the adsorbate chemisorption of certain gases (e.g. H2 or CO) is also used, including for particle size distributions. We give some examples in chapter 5. [Pg.81]

Other important measurements on the chemisorption of hydrogen include those of Rideal and Trapnell (90-92) on tungsten films and those of Schuit and his coworkers (93, 94a, b) on silica-supported metal catalysts. In each case the heat of adsorption was observed to decrease to very low values as complete coverage was approached. [Pg.334]

These relative chemisorption strengths enable us to make some simple predictions regarding suitable metal catalysts for specific reactions. For example, a catalyst for the Haber process must chemisorb both N2 and H2, but not too strongly. Since N2 is the less readily bound, we choose Fe, Ru, or Os. The latter two are expensive, so our best choice is iron—usually finely divided, on a suitable refractory support. [Pg.120]

The literature of the vibrational spectra of adsorbed alkynes (acetylene and alkyl-substituted acetylenes) is very much in favor of single-crystal studies, with fewer reported investigations of adsorption on oxide-supported metal catalysts. Fewer studies still have been made of the particulate metals under the more advantageous experimental conditions for spectral interpretation, namely, at low temperatures and on alumina as the support. (The latter has a wide transmittance range down to ca. 1100 cm-1.) A similar number of different single-crystal metal surfaces have been studied for ethyne as for ethene adsorption. We shall review in more detail the low-temperature work which usually leads to HCCH nondissociatively adsorbed surface structures. Only salient features will be discussed for higher temperature ethyne adsorption that often leads to dissociative chemisorption. Many of the latter species are those already identified in Part I from the decomposition of adsorbed ethene. [Pg.183]

Room-temperature adsorption on finely divided metal catalysts has been shown in several cases (Ni/Si02 and Pt/Si02) to give rise to dissociative adsorption as alkylidynes and other products. It is therefore very clear that, contrary to often-expressed views, C-H bonds within the alkanes can readily be broken by interaction with metal catalyst surfaces. Methane is a very important feedstock and, although this may be the most resistant to chemisorption, there is clearly much further of interest to be discovered in this area involving interactions of light alkanes with different metals. [Pg.214]

Inelastic electron tunneling spectroscopy has been shown to be a useful method for the study of chemisorption and catalysis on model oxide and supported metal catalyst systems. There are in addition a number of proven and potential applications in the fields of lubrication, adhesion (48), electron beam damage (49,50), and electrochemistry for the experimentalist who appreciates the advantages and limitations of the technique. [Pg.244]


See other pages where Chemisorption metallic catalysts is mentioned: [Pg.457]    [Pg.204]    [Pg.80]    [Pg.223]    [Pg.105]    [Pg.117]    [Pg.243]    [Pg.130]    [Pg.56]    [Pg.63]    [Pg.366]    [Pg.176]    [Pg.176]    [Pg.376]    [Pg.60]    [Pg.186]    [Pg.152]    [Pg.157]    [Pg.177]    [Pg.364]    [Pg.119]    [Pg.213]    [Pg.55]    [Pg.58]    [Pg.372]    [Pg.217]    [Pg.244]   
See also in sourсe #XX -- [ Pg.70 , Pg.71 , Pg.72 , Pg.73 , Pg.74 , Pg.75 ]




SEARCH



Metal chemisorption

Mixed metal catalysts chemisorption

Supported-metal catalysts chemisorption properties

© 2024 chempedia.info