Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions industrial processes

Li S, Zu B. Kinetics in Inorganic Chemical Reaction Industrial Process, Beijing Chemical Industry Press, 1966. [Pg.183]

The innovative approach to the design of clean chemical reactions and processes has proved very successful, as shown by the increase in the number of applicants to the school year after year. From 1998 to 2005 nearly 500 chemistry researchers, between the ages of 25 and 35, from both academic and industrial backgrounds, have attended the school. [Pg.325]

In industrial practice the foaming processes are sometimes divided into chemical and physical processes. Chemical processes are those where the formation of gas takes place by decomposition of an unstable inorganic or organic compound or by a chemical reaction. Physical processes mean such techniques where the foaming gases are pumped into the polymer or are formed by the evaporation of liquids. [Pg.374]

Many industrial processes require accurate environmental control. Examples include chemical reactions and processes that are affected by atmospheric conditions biochemical reactions quality, uniformity, and standardization of certain products factors such as rate of crystallization and size of crystals product moisture content or regain deliquescence, lumping, and caking of hygroscopic materials expansion and contraction of macliines and products physical, chemical, and biological cleanliness effects of static electricity odors and fumes conditions in storage and packaging quality of painted and lacquered finishes simulation of stratosphere or space conditions and productivity and comf ort of workers. Controlled atmospheric conditions are... [Pg.362]

Many industrial processes rely on effective agitation and mixing of fluids. The application of agitators cover the areas of mining, hydrometallurgy, biol-ogy, petroleum, food, pulp and paper, pharmaceutical and chemical process industry. In particular, in these industries we find typical chemical reaction engineering processes like fermentation, waste water treatment, hydrogenation, polymerization, crystallization, flue gas desulfurization, etc [65, 21]. [Pg.679]

The recent literature on microwave-assisted chemistry has reported a multitude of different effects in chemical reactions and processes and attributed them to microwave radiation. Some of these published results cannot be reproduced, however, because the household microwave ovens employed often have serious technical shortcomings. Published experimental procedures are often insufficient and do not enable reproduction of the results obtained. Important factors required for qualification and validation, for example exact records, reproducibility, and transparency of reactions/processes, are commonly not reported, which poses a serious drawback in the industrial development of microwave-assisted reactions and processes for synthesis of fine chemicals, intermediates, and pharmaceuticals. Technical microwave devices for synthetic chemistry have been on the market for a while (cf a.m. explanations) and should enable comparative investigations to be conducted under set conditions. These investigations would enable better assessment of the observed effects. It is, furthermore, possible to obtain a better insight into the often discussed (nonthermal) microwave effects from these experiments (Ref. [138] and Chapter 4 of this book). Technical microwave systems are an important first step toward the use of microwave energy for technical synthesis. The actual scale-up of chemical reactions in the microwave is, however, still to be undertaken. Comparisons between microwave systems with different technical specifications should provide a measure for qualification of the systems employed, which in turn is important for validation of reactions and processes performed in such commercial systems. [Pg.102]

The chemical industry is broad, and it would not be possible to adequately cover all the areas here. However, some representative examples illustrate the earlier concepts and provide incentive for future work. The solvents presently used in chemical reactions and processes were chosen based upon on performance criteria, including optimal yield, chemical reactivity and selectivity. Each industry or chemical sector must determine how the regulatory, economic and technological drivers affect their solvent supply in the near and far term, and motivate them to use green solvents. [Pg.323]

Synllicsis reactions Industrial processes Chemical products Usesofchmicals... [Pg.113]

Ignis mutat res, fire transforms matter. Fire leads to chemical reactions, to processes such as melting and evaporation. Fire makes fuel bum and release heat. Out of all this common knowledge, nineteenth-century science concentrated on the single fact that combustion produces heat and that heat may lead to an increase in volume as a result, combustion produces work. Fire leads, therefore, to a new kind of machine, the heat engine, the technological innovation on which industrial society has been founded. [Pg.497]

Catalytic gas-phase reactions play an important role in many bulk chemical processes, such as in the production of methanol, ammonia, sulfuric acid, and nitric acid. In most processes, the effective area of the catalyst is critically important. Since these reactions take place at surfaces through processes of adsorption and desorption, any alteration of surface area naturally causes a change in the rate of reaction. Industrial catalysts are usually supported on porous materials, since this results in a much larger active area per unit of reactor volume. [Pg.47]

Most chemically reacting systems tliat we encounter are not tliennodynamically controlled since reactions are often carried out under non-equilibrium conditions where flows of matter or energy prevent tire system from relaxing to equilibrium. Almost all biochemical reactions in living systems are of tliis type as are industrial processes carried out in open chemical reactors. In addition, tire transient dynamics of closed systems may occur on long time scales and resemble tire sustained behaviour of systems in non-equilibrium conditions. A reacting system may behave in unusual ways tliere may be more tlian one stable steady state, tire system may oscillate, sometimes witli a complicated pattern of oscillations, or even show chaotic variations of chemical concentrations. [Pg.3054]

Many industrial processes involve a chemical reaction between two Hquid phases, for example nitration (qv), sulfonation (see Sulfonation and sulfation), alkylation (qv), and saponification. These processes are not always considered to be extractions because the main objective is a new chemical product, rather than separation (30). However these processes have many features in common with extraction, for example the need to maintain a high interfacial area with the aid of agitation and the importance of efficient phase separation after the reaction is completed. [Pg.62]

Initiation of radical reactions with uv radiation is widely used in industrial processes (85). In contrast to high energy radiation processes where the energy of the radiation alone is sufficient to initiate reactions, initiation by uv irradiation usually requires the presence of a photoinitiator, ie, a chemical compound or compounds that generate initiating radicals when subjected to uv radiation. There are two types of photoinitiator systems those that produce initiator radicals by intermolecular hydrogen abstraction and those that produce initiator radicals by photocleavage (86—91). [Pg.230]

Petroleum refining, also called petroleum processing, is the recovery and/or generation of usable or salable fractions and products from cmde oil, either by distillation or by chemical reaction of the cmde oil constituents under the effects of heat and pressure. Synthetic cmde oil, produced from tar sand (oil sand) bitumen, and heavier oils are also used as feedstocks in some refineries. Heavy oil conversion (1), as practiced in many refineries, does not fall into the category of synthetic fuels (syncmde) production. In terms of Hquid fuels from coal and other carbonaceous feedstocks, such as oil shale (qv), the concept of a synthetic fuels industry has diminished over the past several years as being uneconomical in light of current petroleum prices. [Pg.200]

Methylchlorodisilanes are by-products of the dkect-process residue, commonly called high boiling point residue or simply residue, and are formed in about 4% of the total (CH2)2SiCl2 produced, which in 1994 was about 30,000 tons per year. Disilanes are key constituents of the residue, and novel reactions forming Si—Cl bonds have been described (44,45). Some chemical reactions of dkect-process disilanes are shown in Figure 2. Cleavage chemistry of Si—Si compounds with HCl practiced industrially has also been described (47). [Pg.43]

Sulfur is unusual compared to most large mineral commodities in that the largest portion of sulfur is used as a chemical reagent rather than as a component of a finished product. Its predominant use as a process chemical generally requires that it first be converted to an intermediate chemical product prior to use in industry. In most of the ensuing chemical reactions between these sulfur-containing intermediate products and other minerals and chemicals, the sulfur values are not retained. Rather, the sulfur values are most often discarded as a component of the waste product. [Pg.125]

Tertiary stibines have been widely employed as ligands in a variety of transition metal complexes (99), and they appear to have numerous uses in synthetic organic chemistry (66), eg, for the olefination of carbonyl compounds (100). They have also been used for the formation of semiconductors by the metal—organic chemical vapor deposition process (101), as catalysts or cocatalysts for a number of polymerization reactions (102), as ingredients of light-sensitive substances (103), and for many other industrial purposes. [Pg.207]

Dehydrochlorination to Epoxides. The most useful chemical reaction of chlorohydrins is dehydrochlotination to form epoxides (oxkanes). This reaction was first described by Wurtz in 1859 (12) in which ethylene chlorohydria and propylene chlorohydria were treated with aqueous potassium hydroxide [1310-58-3] to form ethylene oxide and propylene oxide, respectively. For many years both of these epoxides were produced industrially by the dehydrochlotination reaction. In the past 40 years, the ethylene oxide process based on chlorohydria has been replaced by the dkect oxidation of ethylene over silver catalysts. However, such epoxides as propylene oxide (qv) and epichl orohydrin are stiU manufactured by processes that involve chlorohydria intermediates. [Pg.72]

Consistent Data-Recording Procedures. Clear procedures for recording all pertinent data from the experiment must be developed and documented, and unambiguous data recording forms estabUshed. These should include provisions not only for recording the values of the measured responses and the desired experimental conditions, but also the conditions that resulted, if these differ from those plaimed. It is generally preferable to use the values of the actual conditions in the statistical analysis of the experimental results. For example, if a test was supposed to have been conducted at 150°C but was mn at 148.3°C, the actual temperature would be used in the analysis. In experimentation with industrial processes, process equiUbrium should be reached before the responses are measured. This is particularly important when complex chemical reactions are involved. [Pg.522]

FIG. 20-62 Comparisons of levels of analysis of chemical reaction and size-enlargement processes. Reprinted from Granulation and Coating Technologies for High-Value-Added Industries, Ennis and Litster (1996) with permission of E G Associates. All rights reserved. [Pg.1877]

An industrial chemical reacdor is a complex device in which heat transfer, mass transfer, diffusion, and friction may occur along with chemical reaction, and it must be safe and controllable. In large vessels, questions of mixing of reactants, flow distribution, residence time distribution, and efficient utilization of the surface of porous catalysts also arise. A particular process can be dominated by one of these factors or by several of them for example, a reactor may on occasion be predominantly a heat exchanger or a mass-transfer device. A successful commercial unit is an economic balance of all these factors. [Pg.2070]


See other pages where Chemical reactions industrial processes is mentioned: [Pg.20]    [Pg.301]    [Pg.20]    [Pg.301]    [Pg.362]    [Pg.125]    [Pg.6]    [Pg.540]    [Pg.375]    [Pg.1080]    [Pg.505]    [Pg.1169]    [Pg.837]    [Pg.2]    [Pg.117]    [Pg.133]    [Pg.809]    [Pg.466]    [Pg.53]    [Pg.899]    [Pg.282]    [Pg.495]    [Pg.201]    [Pg.507]    [Pg.204]    [Pg.427]    [Pg.441]    [Pg.382]    [Pg.240]    [Pg.193]    [Pg.286]   
See also in sourсe #XX -- [ Pg.57 , Pg.57 ]




SEARCH



Chemical industrial process

Chemical process industry

Chemical processing industries

Chemical reaction industry

Chemical reaction processes

Industry Chemical process industries

© 2024 chempedia.info