Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical analysis selection

It is shown that both Sb(III) and Bi(III) can speed reduction of 12-molybdophosphate (12-MPC) to the corresponding heteropoly blue (12-MPB) by ascorbic acid (AA). It is found that mixed polyoxometalates can be formed in solution which reduce considerably more rapidly than 12-MPC. Complete formation of mixed POM is observed only if significant excess of Me(III) ions is used in the reaction. POM responsible for blue color was synthesized by selective extraction. Chemical analysis of tetrabutyl-ammonium salt is in accordance with formula of (TBAl PMeflllfMo O j (Me = Sb, Bi). IR spectmm of mixed POM is identical to 12-MPC. [Pg.156]

Selective removal of the less noble constituent has been demonstrated by chemical analysis in the case of nickel-rich alloys in fused caustic soda or fused fluorides ", and by etching effects and X-ray microanalysis for Fe-18Cr-8Ni steels in fused alkali chlorides. This type of excessive damage can occur with quite small total amounts of corrosion, and in this sense its effect on the mechanical properties of the alloy is comparable with the notorious effect of intercrystalline disintegration in the stainless steels. [Pg.440]

The application of a selective pyrolysis process to the recovery of chemicals from waste PU foam is described. The reaction conditions are controlled so that target products can be collected directly from the waste stream in high yields. Molecular beam mass spectrometry is used in small-scale experiments to analyse the reaction products in real time, enabling the effects of process parameters such as temperature, catalysts and co-reagents to be quickly screened. Fixed bed and fluidised bed reactors are used to provide products for conventional chemical analysis to determine material balances and to test the concept under larger scale conditions. Results are presented for the recycling of PU foams from vehicle seats and refrigerators. 12 refs. [Pg.79]

Because HPLC and HPCE are based on different physico-chemical principles, HPCE may be expected to address areas in which HPLC has shortcomings [884]. One such area is time of separation. In terms of speed of analysis, selectivity, quantitation, methods to control separation mechanism, orthogonality, CE performs better than conventional electrophoresis and varies from HPLC (Table 4.49). CE has very high efficiency compared to HPLC (up to two orders of magnitude) or GC. For typical capillary dimensions 105—106 theoretical plates are common in CE compared to 20 000 for a conventional HPLC column and... [Pg.276]

Tandem mass spectrometry is the ultimate problemsolving tool for chemical analysis when enhanced specificity, specificity, selectivity, sensitivity, and/or speed are required, but at a price. This is primarily due to the capacity of MS/MS to obtain spectra of selected precursor ions in complex mixtures. Advantages in using MS/MS are ... [Pg.399]

After matrix removal, samples can be measured using various techniques, such as AAS, AES, ICP, etc. Traditional chemical analysis methods, involving separation and gravimetric, titrimetric or polarographic determination of the elements, are being replaced by a wide selection of instrumental methods. [Pg.589]

Any attempt to give an up-to-date account of physical methods of chemical analysis of materials must suffer from the problem of aiming at a moving target. In the chapters which follow I have attempted to illustrate the selected techniques with examples taken from the recent literature of the subject. However I am aware that there is constant instrument development and improvement, so that what follows is at best only a description of analytical equipment that is commercially available at the present time. [Pg.224]

To illustrate the results obtained by this method, a few data are selected from investigations on the contamination of chicken flesh with 7-hexachlorocyclohexane and of cabbage with parathion. These cases are especially interesting because with the chicken flesh the liquid fats alter contact with the hexachlorocyclohexane and also cause considerable mortality of flies and because with cabbage chemical analysis of parathion is difficult on account of very high blanks with untreated samples when the usual colorimetric method is used. [Pg.95]

In the Mediterranean Sea and Middle East area, for example, there are obsidian outflows only in Italy, in some islands in the Aegean Sea, and in Turkey. Artifacts made of obsidian, however, are widely distributed over much of this vast area. Chemical analysis of many of these artifacts has shown that most of the obsidian used to make them originated in one or another of the outflows mentioned, but also in far-distant places such as Armenia and Iran. Plotting on a graph the concentration of selected elements in samples from obsidian sources against that in samples from sites where it was used, enables the identification of the source of the samples (see Fig. 22). Moreover, this type of analysis also makes it possible to trace the routes through which obsidian (and most probably other goods) were traded in antiquity (Renfrew and Dixon 1976). [Pg.126]

Detailed chemical analysis of additives and their reaction or breakdown products involves the application of a variety of chromatographic, spectroscopic or other techniques [1-2], Selection of additives depends on end-use requirements and for certain types of products, for example, those used in contact with food or medical materials, they are subject to regulatory control [3—4]. [Pg.562]

Abstract. We have performed the chemical analysis of extragalactic carbon stars from VLT/UVES spectra. The derived individual abundances of metals and s-elements as well as the well known distance of the selected stars in the Small Magellanic Cloud and the Sagittarius dwarf galaxies permit us to test current models of stellar evolution and nucleosynthesis during the Asymptotic Giant Branch phase in low metallicity environments. [Pg.262]

V-Mo-Zeolite catalysts prepared by solid-state ion exchange were studied in the selective catalytic reduction of NOx by ammonia. The catalysts were characterized by chemical analysis, X-ray powder diffraction, N2 adsorption (BET), DRIFT, UV-Vis and Raman, spectroscopy and H2 TPR. Catalytic results show that upon addition of Mo to V-ZSM-5, catalytic performance was enhanced compared to V-ZSM-5. [Pg.129]

Cr-ZSM-5 catalysts prepared by solid-state reaction from different chromium precursors (acetate, chloride, nitrate, sulphate and ammonium dichromate) were studied in the selective ammoxidation of ethylene to acetonitrile. Cr-ZSM-5 catalysts were characterized by chemical analysis, X-ray powder diffraction, FTIR (1500-400 cm 1), N2 physisorption (BET), 27A1 MAS NMR, UV-Visible spectroscopy, NH3-TPD and H2-TPR. For all samples, UV-Visible spectroscopy and H2-TPR results confirmed that both Cr(VI) ions and Cr(III) oxide coexist. TPD of ammonia showed that from the chromium incorporation, it results strong Lewis acid sites formation at the detriment of the initial Bronsted acid sites. The catalyst issued from chromium chloride showed higher activity and selectivity toward acetonitrile. This activity can be assigned to the nature of chromium species formed using this precursor. In general, C r6+ species seem to play a key role in the ammoxidation reaction but Cr203 oxide enhances the deep oxidation. [Pg.345]

Ion-selective electrodes are now well understood in terms of the underlying theory, and this has made it possible for new sensing principles to emerge that make use of the thousands of chemical receptors originally developed for ion-selective electrodes. One is the field of optical sensors, which has not been discussed here because it is outside the focus of this chapter. Such so-called bulk optodes do not require electrical connectivity between the sensing and detection unit and are therefore more easily brought into various shapes and sizes, including particle formats, which suit the need of modem chemical analysis. [Pg.131]

This field is therefore at an exciting stage. Ion-selective electrodes have a proven track record in terms of clinical and biomedical analysis, with a well-developed theory and a solid history of fundamental research and practical applications. With novel directions in achieving extremely low detection limits and instrumental control of the ion extraction process this field has the opportunity to give rise to many new bioana-lytical measurement tools that may be truly useful in practical chemical analysis. [Pg.132]


See other pages where Chemical analysis selection is mentioned: [Pg.400]    [Pg.400]    [Pg.1720]    [Pg.521]    [Pg.554]    [Pg.318]    [Pg.424]    [Pg.191]    [Pg.535]    [Pg.133]    [Pg.521]    [Pg.570]    [Pg.721]    [Pg.6]    [Pg.6]    [Pg.96]    [Pg.3]    [Pg.141]    [Pg.142]    [Pg.5]    [Pg.535]    [Pg.332]    [Pg.343]    [Pg.304]    [Pg.101]    [Pg.116]    [Pg.638]    [Pg.196]    [Pg.322]    [Pg.574]    [Pg.153]    [Pg.157]    [Pg.130]    [Pg.198]    [Pg.184]    [Pg.307]    [Pg.274]   
See also in sourсe #XX -- [ Pg.6 , Pg.1026 ]




SEARCH



Chemicals selection

Selection analysis

Selective analysis

Selectivity analysis

© 2024 chempedia.info