Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cellulose amination

Celluloses Amines, amino acids, antibiotics, carbohydrates, glycosides, hydrocarbons, inorganic ions, nucleic acids, organic acids, peptides, urea derivatives, vitamins... [Pg.259]

Xu X, Gao B, Tang X, Yue Q, Zhong Q, Li Q. Characteristics of cellulosic amine-crosslinked copolymer and its sorption properties for Cr(Vl) from aqueous solutions. 1 Hazard Mater 2011 189 420-426. [Pg.149]

HN —R —NH —R ),. Hydrophilic polar substances formed by reacting alkylene polyamines or simple amines with alkylene dihalides. Used as flocculants, for, e.g. cellulose fibre and mineral ore suspensions. [Pg.320]

Many of these reactions are reversible, and for the stronger nucleophiles they usually proceed the fastest. Typical examples are the addition of ammonia, amines, phosphines, and bisulfite. Alkaline conditions permit the addition of mercaptans, sulfides, ketones, nitroalkanes, and alcohols to acrylamide. Good examples of alcohol reactions are those involving polymeric alcohols such as poly(vinyl alcohol), cellulose, and starch. The alkaline conditions employed with these reactions result in partial hydrolysis of the amide, yielding mixed carbamojdethyl and carboxyethyl products. [Pg.133]

Fully modified yams had smooth, all-skin cross sections, a stmcture made up of numerous small crystaUites of cellulose, and filament strengths around 0.4 N/tex (4.5 gf/den). They were generally known as the Super tire yams. Improved Super yams (0.44—0.53 N/tex (5—6 gf/den)) were made by mixing modifiers, and one of the best combiaations was found to be dimethylamine with poly-(oxyethylene) glycol of about 1500 mol wt (25). Ethoxjlated fatty acid amines have now largely replaced dimethylamine because they are easier to handle and cost less. [Pg.349]

The cellulose dissolving potential of the amine oxide family was first realized (79) in 1939, but it was not until 1969 that Eastman Kodak described the use of cycHc mono(/V-methy1amine-/V-oxide) compounds, eg, /V-methylmorpho1ine-/V-oxide [7529-22-8] (NMMO), as a solvent size for strengthening paper (80) by partially dissolving the cellulose fibers. [Pg.351]

Other patents (81,82) coveted the preparation of cellulose solutions using NMMO and speculated about their use as dialysis membranes, food casings (sausage skins), fibers, films, paper coatings, and nonwoven binders. NMMO emerged as the best of the amine oxides, and its commercial potential was demonstrated by American Enka (83,84). Others (85) have studied the cellulose-NMMO system in depth one paper indicates that further strength increases can be obtained by adding ammonium chloride or calcium chloride to the dope (86). [Pg.351]

Nitrations are highly exothermic, ie, ca 126 kj/mol (30 kcal/mol). However, the heat of reaction varies with the hydrocarbon that is nitrated. The mechanism of a nitration depends on the reactants and the operating conditions. The reactions usually are either ionic or free-radical. Ionic nitrations are commonly used for aromatics many heterocycHcs hydroxyl compounds, eg, simple alcohols, glycols, glycerol, and cellulose and amines. Nitration of paraffins, cycloparaffins, and olefins frequentiy involves a free-radical reaction. Aromatic compounds and other hydrocarbons sometimes can be nitrated by free-radical reactions, but generally such reactions are less successful. [Pg.32]

Phloroglucinol is Hsted in the Colourindex as Cl Developer 19. It is particularly valuable in the dyeing of acetate fiber but also has been used as a coupler for azoic colors in viscose, Odon, cotton (qv), rayon, or nylon fibers, or in union fabrics containing these fibers (157). For example, cellulose acetate fabric is treated with an aromatic amine such as (9-dianisidine or a disperse dye such as A-hydroxyphenylazo-2-naphthylamine and the amine diazotizes on the fiber the fabric is then rinsed, freed of excess nitrite, and the azo color is developed in a phloroglucinol bath at pH 5—7. Depending on the diazo precursor used, intense blue to jet-black shades can be obtained with excellent light-, bleach-, and mbfastness. [Pg.384]

Propylene oxide has found use in the preparation of polyether polyols from recycled poly(ethylene terephthalate) (264), haUde removal from amine salts via halohydrin formation (265), preparation of flame retardants (266), alkoxylation of amines (267,268), modification of catalysts (269), and preparation of cellulose ethers (270,271). [Pg.143]

Cellulose Solvent. Although DMSO by itself does not dissolve cellulose, the following binary and ternary systems are cellulose solvents DMSO—methylamine, DMSO—sulfur trioxide, DMSO—carbon disulfide—amine, DMSO— ammonia—sodamide, DMSO—dinitrogen tetroxide,... [Pg.112]

Some commercial durable antistatic finishes have been Hsted in Table 3 (98). Early patents suggest that amino resins (qv) can impart both antisHp and antistatic properties to nylon, acryUc, and polyester fabrics. CycHc polyurethanes, water-soluble amine salts cross-linked with styrene, and water-soluble amine salts of sulfonated polystyrene have been claimed to confer durable antistatic protection. Later patents included dibydroxyethyl sulfone [2580-77-0] hydroxyalkylated cellulose or starch, poly(vinyl alcohol) [9002-86-2] cross-linked with dimethylolethylene urea, chlorotria2ine derivatives, and epoxy-based products. Other patents claim the use of various acryUc polymers and copolymers. Essentially, durable antistats are polyelectrolytes, and the majority of usehil products involve variations of cross-linked polyamines containing polyethoxy segments (92,99—101). [Pg.294]

Unit cells of pure cellulose fall into five different classes, I—IV and x. This organization, with recent subclasses, is used here, but Cellulose x is not discussed because there has been no recent work on it. Crystalline complexes with alkaU (50), water (51), or amines (ethylenediamine, diaminopropane, and hydrazine) (52), and crystalline cellulose derivatives also exist. Those stmctures provide models for the interactions of various agents with cellulose, as well as additional information on the cellulose backbone itself. Usually, as shown in Eigure la, there are two residues in the repeated distance. However, in one of the alkah complexes (53), the backbone takes a three-fold hehcal shape. Nitrocellulose [9004-70-0] heUces have 2.5 residues per turn, with the repeat observed after two turns (54). [Pg.240]

Cellulose III. Cellulose III results from treatment of cellulose with Hquid ammonia (ammonia mercerization) or amines. Cellulose III can be made from either Cellulose I or II. When treated with water. Cellulose III can revert to its parent stmcture. Some cellulose III preparations are much more stable than other preparations. The intensities on diffraction patterns from Cellulose III differ slightly depending on whether the Cellulose III was made from Cellulose I or II, and thus these allomorphs are called IIIj or IHjj- Workers studying III concluded, based partiy on the results of I and II, that the packings of IIIj and IIIjj are parallel and antiparallel, respectively (67). IIIjj also is thought to have hydrogen bonds between the corner and center chains. [Pg.242]

Amine-containing cellulose esters, eg, the acetate A/A/-diethylaminoacetate (36) and propionate morpholinobutyrate (35), are of interest because of their unique solubiHty in dilute acid. Such esters are prepared by the addition of the appropriate amine to the cellulose acrylate crotonate esters or by replacement of the chlorine on cellulose acrylate chloroacetate esters with amines. This type of ester has been suggested for use in controlled release, mmen-protected feed supplements for mminants (36,37). [Pg.251]

Dialkyl esters of 3,3 -thiodipropionic acid (53), cycHc phosphonites such as neopentylphenyl phosphite, derivatives of phosphaphenathrene-lO-oxide (54), secondary aromatic amines, eg, diphenylamine (55), and epoxidi2ed soybean oils (56) are effective stabili2ers for preventing discoloration of cellulose esters during thermal processing. [Pg.252]

However, this method is appHed only when esterification cannot be effected by the usual acid—alcohol reaction because of the higher cost of the anhydrides. The production of cellulose acetate (see Fibers, cellulose esters), phenyl acetate (used in acetaminophen production), and aspirin (acetylsahcyhc acid) (see Salicylic acid) are examples of the large-scale use of acetic anhydride. The speed of acylation is greatiy increased by the use of catalysts (68) such as sulfuric acid, perchloric acid, trifluoroacetic acid, phosphoms pentoxide, 2inc chloride, ferric chloride, sodium acetate, and tertiary amines, eg, 4-dimethylaminopyridine. [Pg.380]

Some materials such as water, alcohols, carboxylic acids and primary and secondary amines may be able to act simultaneously as proton donors and acceptors. Cellulose and poly(vinyl alcohol) are two polymers which also function in this way. [Pg.87]

UV absorbers have been found to be quite effective for stabilization of polymers and are very much in demand. They function by the absorption and harmless dissipation of the sunlight or UV-rich artificial radiation, which would have otherwise initiated degradation of a polymer material. Meyer and Geurhart reported, for the first time in 1945 [10], the use of UV absorber in a polymer. They found that the outdoor life of cellulose acetate film was greatly prolonged by adding phenyl salicylate (salol) [10]. After that, resorcinol monobenzoate, a much more effective absorber, was introduced in 1951 [11] for stabilization of PP, but salol continued to be the only important commercial stabilizer for several years. The 2,4-dihydroxybenzophenone was marketed in 1953, followed shortly by 2-hydroxy-4-methoxybenzophenone and other derivatives. Of the more commonly known UV absorbers, the 2-hydroxybenzophenones, 2-hy-droxy-phenyl-triazines, derivatives of phenol salicylates, its metal chelates, and hindered amine light stabilizers (HALS) are widely used in the polymer industry. [Pg.400]

Mino and Kaizerman [12] established that certain. ceric salts such as the nitrate and sulphate form very effective redox systems in the presence of organic reducing agents such as alcohols, thiols, glycols, aldehyde, and amines. Duke and coworkers [14,15] suggested the formation of an intermediate complex between the substrate and ceric ion, which subsequently is disproportionate to a free radical species. Evidence of complex formation between Ce(IV) and cellulose has been studied by several investigators [16-19]. Using alcohol the reaction can be written as follows ... [Pg.503]

The presence of sulphonic and carboxylic groups enables the iron ions to be in the vicinity of the cellulose backbone chain. In this case, the radicals formed can easily attack the cellulose chain leading to the formation of a cellulose macroradical. Grafting of methyl methacrylate on tertiary aminized cotton using the bi-sulphite-hydrogen peroxide redox system was also investigated [58]. [Pg.506]

Recently, Li et al. [30], Yu et al. [31] reinvestigated the mechanism of graft copolymerization of vinyl monomers onto carbohydrates such as starch and cellulose initiated by the Ce(IV) ion with some new results as mentioned in Section II. Furthermore, they investigated the mechanism of model graft copolymerization of vinyl monomers onto chitosan [51]. They chose the compounds containing adjacent hydroxyl-amine structures, such as D-glucosamine, /mn5-2-amino-cyclohexanol, 2-... [Pg.551]

It has been shown52 that under similar conditions reduction of the nitrile groups in cellulose ethyl cyanate and of those in the copolymer of vinylidene cyanide with vinyl acetate, proceed simultaneously in two directions with the formation of aldehyde and amine groups. g+ g ... [Pg.117]

Cellulosic, polyester, and acrylic fibers lubricated with a surfactant-based oiling composition containing an organic phosphorus ester neutralized with an amine showed less pilling, good antistatic properties, and anticorrosiveness. The phosphorus ester salts were hexyl phosphate trimethylamine salt, dodecamethy-lene caproate phosphonate ethylamine salt, and polyethylene glycol dodecyl ether phosphate dimethylamine salt [262]. [Pg.608]


See other pages where Cellulose amination is mentioned: [Pg.493]    [Pg.66]    [Pg.1039]    [Pg.493]    [Pg.66]    [Pg.1039]    [Pg.231]    [Pg.412]    [Pg.351]    [Pg.487]    [Pg.20]    [Pg.331]    [Pg.151]    [Pg.158]    [Pg.163]    [Pg.394]    [Pg.366]    [Pg.450]    [Pg.313]    [Pg.48]    [Pg.361]    [Pg.18]    [Pg.487]    [Pg.507]    [Pg.536]    [Pg.107]    [Pg.403]   
See also in sourсe #XX -- [ Pg.29 , Pg.342 ]

See also in sourсe #XX -- [ Pg.342 ]




SEARCH



© 2024 chempedia.info