Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction results

Due to the prolonged reaction times in organic solvents, cKmerisation of the diene occurs during the reaction, resulting in contaminated product mixtures after work-up. In contrast the reactions in water yield quantitatively the H-NMR-pure Diels-Alder adducts. [Pg.96]

Certain features of the addition of acetyl nitrate to olefins in acetic anhydride may be relevant to the mechanism of aromatic nitration by this reagent. The rapid reaction results in predominantly cw-addition to yield a mixture of the y -nitro-acetate and y5-nitro-nitrate. The reaction was facilitated by the addition of sulphuric acid, in which case the 3rield of / -nitro-nitrate was reduced, whereas the addition of sodium nitrate favoured the formation of this compound over that of the acetate. As already mentioned ( 5.3. i), a solution of nitric acid (c. i 6 mol 1 ) in acetic anhydride prepared at — 10 °C would yield 95-97 % of the nitric acid by precipitation with urea, whereas from a similar solution prepared at 20-25 °C and cooled rapidly to —10 °C only 30% of the acid could be recovered. The difference between these values was attributed to the formation of acetyl nitrate. A solution prepared at room... [Pg.83]

Mechanistically, the reaction results from the mesomeric donor effect of the 2-hydrazino group. The coupling between the two molecules takes place in the 5-position (Scheme 48). [Pg.252]

If you specify a multiplicity of one (singlet), then you would most often choose the RHFmethod, unless the reactions result in bond breaking (see page 46). If the selected multiplicity is greater than one, then the system is open-shell and the usual choice is the UHF method, which uses different orbitals for electrons with different spins. [Pg.45]

Neutron Activation Analysis Few samples of interest are naturally radioactive. For many elements, however, radioactivity may be induced by irradiating the sample with neutrons in a process called neutron activation analysis (NAA). The radioactive element formed by neutron activation decays to a stable isotope by emitting gamma rays and, if necessary, other nuclear particles. The rate of gamma-ray emission is proportional to the analyte s initial concentration in the sample. For example, when a sample containing nonradioactive 13AI is placed in a nuclear reactor and irradiated with neutrons, the following nuclear reaction results. [Pg.645]

Many of these reactions are reversible, and for the stronger nucleophiles they usually proceed the fastest. Typical examples are the addition of ammonia, amines, phosphines, and bisulfite. Alkaline conditions permit the addition of mercaptans, sulfides, ketones, nitroalkanes, and alcohols to acrylamide. Good examples of alcohol reactions are those involving polymeric alcohols such as poly(vinyl alcohol), cellulose, and starch. The alkaline conditions employed with these reactions result in partial hydrolysis of the amide, yielding mixed carbamojdethyl and carboxyethyl products. [Pg.133]

Postreactions of polyacrylamide to iatroduce anionic, cationic, or other functional groups are often attractive from a cost standpoiat. This approach can suffer, however, from side reactions resulting ia cross-linking or the iatroduction of unwanted functionahty, such as carboxyl groups from hydrolysis. [Pg.140]

There are numerous variations of the wet process, but all involve an initial step in which the ore is solubilized in sulfuric acid, or, in a few special instances, in some other acid. Because of this requirement for sulfuric acid, it is obvious that sulfur is a raw material of considerable importance to the fertilizer industry. The acid—rock reaction results in formation of phosphoric acid and the precipitation of calcium sulfate. The second principal step in the wet processes is filtration to separate the phosphoric acid from the precipitated calcium sulfate. Wet-process phosphoric acid (WPA) is much less pure than electric furnace acid, but for most fertilizer production the impurities, such as iron, aluminum, and magnesium, are not objectionable and actually contribute to improved physical condition of the finished fertilizer (35). Impurities also furnish some micronutrient fertilizer elements. [Pg.224]

Peroxide-Ketazine Process. Elf Atochem in France operates a process patented by Produits Chimiques Ugine Kuhhnaim (PCUK). Hydrogen peroxide (qv), rather than chlorine or hypochlorite, is used to oxidize ammonia. The reaction is carried out in the presence of methyl ethyl ketone (MEK) at atmospheric pressure and 50°C. The ratio of H202 MEK NH2 used is 1 2 4. Hydrogen peroxide is activated by acetamide and disodium hydrogen phosphate (117). Eigure 6 is a simplified flow sheet of this process. The overall reaction results in the formation of methyl ethyl ketazine [5921-54-0] (39) and water ... [Pg.284]

Hexa.cya.no Complexes. Ferrocyanide [13408-63 ] (hexakiscyanoferrate-(4—)), (Fe(CN) ) , is formed by reaction of iron(II) salts with excess aqueous cyanide. The reaction results in the release of 360 kJ/mol (86 kcal/mol) of heat. The thermodynamic stabiUty of the anion accounts for the success of the original method of synthesis, fusing nitrogenous animal residues (blood, horn, hides, etc) with iron and potassium carbonate. Chemical or electrolytic oxidation of the complex ion affords ferricyanide [13408-62-3] (hexakiscyanoferrate(3—)), [Fe(CN)g] , which has a formation constant that is larger by a factor of 10. However, hexakiscyanoferrate(3—) caimot be prepared by direct reaction of iron(III) and cyanide because significant amounts of iron(III) hydroxide also form. Hexacyanoferrate(4—) is quite inert and is nontoxic. In contrast, hexacyanoferrate(3—) is toxic because it is more labile and cyanide dissociates readily. Both complexes Hberate HCN upon addition of acids. [Pg.434]

Chrome Tanning. The original chrome tanning was a two-bath process. The unhaired hides, delimed and bated, were treated with a solution of sodium bichromate [10588-01-9]. The amount of bichromate used was about 3—5% based on the weight of the hides. The bichromate was absorbed or adsorbed into the hide, the solution drained, and the hides refloated. Sodium bisulfite was added and two important reactions resulted in the formation of a basic chromium and coUoidal sulfur in the hide. This gave a chrome taimage and also helped to fiH the hide with the soHd sulfur. This cmde system, which continued in the industry in some types of leather for over 50 years, is obsolete. [Pg.85]

Another example is the du Pont process for the production of adiponitrile. Tetrakisarylphosphitenickel(0) compounds are used to affect the hydrocyanation of butadiene. A multistage reaction results in the synthesis of dinitrile, which is ultimately used in the commercial manufacture of nylon-6,6 (144-149). [Pg.14]

Use of diacid chlorides for acyl chlorides in the latter reaction results in generation of di(diacyl peroxides) (25). [Pg.125]

Diethylcarbama2iae has limited antimicrofilarial activity against Onchocerca volvulus. Adults of W. bancrofti the filarial worm causiag elephantiasis, coil in the lymph system. Here females can attain a length of 10 cm. Over the years, tissue reactions result in obstmction to lymph return. Lymph nodes, lymph vessels, and the spleen become enlarged. The condition of elephantiasis is a late and unusual complication of filariasis, where the lower extremities of the body become edematous, enlarge, and over a period of time harden with a rough nodular skin. [Pg.247]

Catalytic reactions at somewhat lower temperatures also produce ethylene and other olefins. When coupled with a methane process to methyl chloride, this reaction results ia a new route to the light hydrocarbons that is of considerable interest. [Pg.513]

The dkect high temperature chlorination of propylene continues to be the primary route for the commercial production of aHyl chloride. The reaction results in aHyl chloride selectivities of 75—80% from propylene and about 75% from chlorine. Additionally, a significant by-product of this reaction, 1,3-dichloropropene, finds commercial use as an effective nematocide when used in soil fumigation. Overall efficiency of propylene and chlorine use thus is significantly increased. Remaining by-products include 1,2-dichloropropane, 2-chloropropene, and 2-chloropropane. [Pg.32]

As shown, ia the case of chlotination of aEyl chloride, the resonance states of the chloroaEyl radical iatermediates are not symmetrical and their propagation reactions lead to the two different dichloropropene isomers ia an approximate 10 90 ratio (26). In addition, similar reactions result ia further substitution and addition with products such as trichloropropanes, trichloropropenes, tetrachloropropanes, etc ia diminisbing amounts. Propylene dimerization products such as 1,5-hexadiene, benzene, 1-chloropropane, 2-chloropropane, high boiling tars, and coke are also produced ia smaE amounts. [Pg.33]


See other pages where Reaction results is mentioned: [Pg.267]    [Pg.546]    [Pg.109]    [Pg.293]    [Pg.375]    [Pg.6]    [Pg.163]    [Pg.425]    [Pg.269]    [Pg.546]    [Pg.196]    [Pg.422]    [Pg.26]    [Pg.222]    [Pg.522]    [Pg.103]    [Pg.164]    [Pg.250]    [Pg.399]    [Pg.60]    [Pg.482]    [Pg.58]    [Pg.216]    [Pg.516]    [Pg.244]    [Pg.409]    [Pg.464]    [Pg.483]    [Pg.328]    [Pg.205]    [Pg.294]    [Pg.184]    [Pg.465]    [Pg.387]   
See also in sourсe #XX -- [ Pg.434 , Pg.436 ]




SEARCH



© 2024 chempedia.info