Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen peroxide redox system

The presence of sulphonic and carboxylic groups enables the iron ions to be in the vicinity of the cellulose backbone chain. In this case, the radicals formed can easily attack the cellulose chain leading to the formation of a cellulose macroradical. Grafting of methyl methacrylate on tertiary aminized cotton using the bi-sulphite-hydrogen peroxide redox system was also investigated [58]. [Pg.506]

The same authors (5) showed also in another work that the presence of larger amounts of lignin in bisulfite pulps may have a favourable effect on grafting polyacrylonitrile using the cellulose xanthate-hydrogen peroxide redox system to initiate the copolymerization reaction. The plots of the total conversion as well as of polymer loading show a minimum centered around approximately 15% of lignin. [Pg.254]

In addition to CuCfi, some other compounds such as Cu(OAc)2, Cu(N03)2-FeCl.i, dichromate, HNO3, potassium peroxodisulfate, and Mn02 are used as oxidants of Pd(0). Also heteropoly acid salts comtaining P, Mo, V, Si, and Ge are used with PdS04 as the redox system[2]. Organic oxidants such as benzo-quinone (BQ), hydrogen peroxide and some organic peroxides are used for oxidation. Alkyl nitrites are unique oxidants which are used in some industrial... [Pg.19]

Hydrogen peroxide may react directiy or after it has first ionized or dissociated into free radicals. Often, the reaction mechanism is extremely complex and may involve catalysis or be dependent on the environment. Enhancement of the relatively mild oxidizing action of hydrogen peroxide is accompHshed in the presence of certain metal catalysts (4). The redox system Fe(II)—Fe(III) is the most widely used catalyst, which, in combination with hydrogen peroxide, is known as Fenton s reagent (5). [Pg.471]

The most common water-soluble initiators are ammonium persulfate, potassium persulfate, and hydrogen peroxide. These can be made to decompose by high temperature or through redox reactions. The latter method offers versatility in choosing the temperature of polymerization with —50 to 70°C possible. A typical redox system combines a persulfate with ferrous ion ... [Pg.25]

The Tf- CF system is preferred over Fenton s reagent because Ti4 is a less powerful oxidizing agent than Fc5+ and the above mentioned pathway and other side reactions are therefore of less consequence.252 Much of the discussion on redox initiation in Section 3.3.2.6.1 is also relevant to hydrogen peroxide. [Pg.96]

Common components of many redox systems are a peroxide and a transition metal ion or complex. The redox reactions of peroxides are covered in the sections on those compounds. Discussion on specific redox systems can be found in sections on diacyl peroxides (3,3.2.1.5), hydroperoxides (3,3.2.5) persulfate (3.3.2.6.1) and hydrogen peroxide (3.3.2.6,2). [Pg.104]

One of the most used systems involves use of horseradish peroxidase, a 3-diketone (mosl commonly 2,4-pentandione), and hydrogen peroxide." " " Since these enzymes contain iron(II), initiation may involve decomposition of hydrogen peroxide by a redox reaction with formation of hydroxy radicals. However, the proposed initiation mechanism- involves a catalytic cycle with enzyme activation by hydrogen peroxide and oxidation of the [3-diketone to give a species which initiates polymerization. Some influence of the enzyme on tacticity and molecular... [Pg.440]

Iron chelators can also be used to selectively bind iron in areas where oxidative stress is observed, thereby preventing the iron from taking part in Fenton reactions without interfering with normal iron homeostasis. Charkoudian et al. have developed boronic acid and boronic ester masked prochelators, which do not bind metals unless exposed to hydrogen peroxide (237,238). The binding of these chelators to iron(III) prevents redox cycling. Similar studies of these systems have been performed by a separate group (239,240). [Pg.237]

Hydrogen peroxide plays an important role in many processes in the atmosphere and in natural aqueous systems. It affects numerous redox reactions, which in turn influence the stability and transport of other chemical substances, e.g., pollutants. In the atmosphere, hydrogen peroxide is believed to be involved in several important oxidation reactions, e.g., conversion of sulfur dioxide to sulfuric acid... [Pg.154]

The catalysis of hydrogen peroxide decomposition by iron ions occupies a special place in redox catalysis. This was precisely the reaction for which the concept of redox cyclic reactions as the basis for this type of catalysis was formulated [10-13]. The detailed study of the steps of this process provided a series of valuable data on the mechanism of redox catalysis [14-17]. The catalytic decomposition of H202 is an important reaction in the system of processes that occur in the organism [18-22]. [Pg.385]

Two additional systems were exploited in order to confirm the involvement of free-radical processes during vindoline oxidations. These were the enzyme peroxidase and photochemistry. Horseradish peroxidase (HRP) oxidized both vindoline and 16-O-acetylvindoline in the presence of hydrogen peroxide. Vindoline was converted to the enamine dimer 59 (78). During the reaction, the following sequence of redox reactions occurs ... [Pg.370]

A new electrolysis system comprising two metal redox couples, Bi(0)/Bi(III) and A1(0)/A1(III), has been shown to be effective for electroreductive Barbier-type allylation of imines [533]. The electrode surface structure has been correlated with the activity towards the electroreduction of hydrogen peroxide for Bi monolayers on Au(III) [578], Electroreductive cycliza-tion of the 4-(phenylsulfonylthio)azetidin-2-one derivative (502) as well as the allenecarboxylate (505) leading to the corresponding cycKzed compounds (504) and (506) has been achieved with the aid of bimetallic metal salt/metal redox systems, for example, BiCh/Sn and BiCh /Zn (Scheme 175) [579]. The electrolysis of (502) is carried out in a DMF-BiCh/Py-(Sn/Sn) system in an undivided cell by changing the current direction every 30 s, giving the product (504)in 67% yield. [Pg.591]

Photolysis Abiotic oxidation occurring in surface water is often light mediated. Both direct oxidative photolysis and indirect light-induced oxidation via a photolytic mechanism may introduce reactive species able to enhance the redox process in the system. These species include singlet molecular O, hydroxyl-free radicals, super oxide radical anions, and hydrogen peroxide. In addition to the photolytic pathway, induced oxidation may include direct oxidation by ozone (Spencer et al. 1980) autooxidation enhanced by metals (Stone and Morgan 1987) and peroxides (Mill et al. 1980). [Pg.281]


See other pages where Hydrogen peroxide redox system is mentioned: [Pg.505]    [Pg.122]    [Pg.122]    [Pg.764]    [Pg.764]    [Pg.51]    [Pg.505]    [Pg.122]    [Pg.122]    [Pg.764]    [Pg.764]    [Pg.51]    [Pg.228]    [Pg.228]    [Pg.40]    [Pg.2435]    [Pg.3931]    [Pg.30]    [Pg.318]    [Pg.433]    [Pg.317]    [Pg.505]    [Pg.529]    [Pg.623]    [Pg.182]    [Pg.57]    [Pg.67]    [Pg.28]    [Pg.157]    [Pg.592]    [Pg.80]    [Pg.97]    [Pg.180]    [Pg.161]    [Pg.25]    [Pg.214]    [Pg.105]    [Pg.300]    [Pg.220]    [Pg.128]    [Pg.146]    [Pg.151]    [Pg.296]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Hydrogen systems

Hydrogenous systems

Redox system

© 2024 chempedia.info