Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Caustic hydrocarbonates

In early designs, the reaction heat typically was removed by cooling water. Crude dichloroethane was withdrawn from the reactor as a liquid, acid-washed to remove ferric chloride, then neutralized with dilute caustic, and purified by distillation. The material used for separation of the ferric chloride can be recycled up to a point, but a purge must be done. This creates waste streams contaminated with chlorinated hydrocarbons which must be treated prior to disposal. [Pg.285]

AH corrosion inhibitors in use as of this writing are oil-soluble surfactants (qv) which consist of a hydrophobic hydrocarbon backbone and a hydrophilic functional group. Oil-soluble surfactant-type additives were first used in 1946 by the Sinclair Oil Co. (38). Most corrosion inhibitors are carboxyhc acids (qv), amines, or amine salts (39), depending on the types of water bottoms encountered in the whole distribution system. The wrong choice of inhibitors can lead to unwanted reactions. Eor instance, use of an acidic corrosion inhibitor when the water bottoms are caustic can result in the formation of insoluble salts that can plug filters in the distribution system or in customers vehicles. Because these additives form a strongly adsorbed impervious film at the metal Hquid interface, low Hquid concentrations are usually adequate. Concentrations typically range up to 5 ppm. In many situations, pipeline companies add their own corrosion inhibitors on top of that added by refiners. [Pg.186]

Sodium erl -Butylate. Sodium / i -butoxide [865-48-5] (CH2)3CONa, mol wt 96.1, is a pale yellow, free-flowing, caustic, hygroscopic powder purity 95—99% bulk density 0.3—0.4 g/mL fairly soluble in alcohols, sparingly soluble in ether and hydrocarbons. [Pg.26]

Potassium Methylate. Potassium methoxide [865-33-8] KOCH, mol wt 70.13, is a fine, free-flowing, yellowish-white, caustic, hygroscopic powder purity 96.5—99% powder density after loose shaking, 0.75 g/mL apparent density (packing weight), 1.00 g/mL medium grain size, 0.05 —0.8 mm easily soluble in alcohols (33% in methanol at 20°C), insoluble in hydrocarbons. [Pg.26]

Low temperature tars contain 30—35 wt % non aromatic hydrocarbons, ca 30% of caustic-extractable phenols in the distillate oils, and 40—50% of aromatic hydrocarbons. The latter usually contain one or more alkyl substituent groups. On atmospheric distillation, coke-oven tars yield 55—60% pitch, whereas CVR tars give 40—50% pitch. The pitch yield from low temperature tars is in the 26—30% range. [Pg.343]

Hydrocarbons Inert Carbon Polymer Caustic Surfactant gases dioxide polymer... [Pg.356]

In oil and gas refinery appHcations, titanium is used as protection in environments of H2S, SO2, CO2, NH, caustic solutions, steam, and cooling water. It is used in heat-exchanger condensers for the fractional condensation of cmde hydrocarbons, NH, propane, and desulfurization products using seawater or brackish water for cooling. [Pg.110]

Polyamide or polyimide polymers are resistant to aliphatic, aromatic, and chlorinated or fluorinated hydrocarbons as well as to many acidic and basic systems but are degraded by high-temperature caustic exposures. [Pg.2458]

The chemical resistance of PCTFE is good but not as good as that of PTFE. Under certain circumstances substances such as chlorosulphonic acid, molten caustic alkalis and molten alkali metal will adversely affect the material. Alcohols, acids, phenols and aliphatic hydrocarbons have little effect but certain aromatic hydrocarbons, esters, halogenated hydrocarbons and ethers may cause swelling at elevated temperatures. [Pg.375]

Oxidation or "sweetening" is used on gasoline and distillate fractions. A common oxidation process is also a Merox process that uses a solid catalyst bed. Air and a minimum amount of alkaline caustic ("mini-alky" operation) is injected into the hydrocarbon stream. As the hydrocarbon passes through the Merox catalyst bed, sulfur mercaptans are oxidized to disulfide. In the sweetening Merox process, the caustic is not regenerated. The disulfide can remain with the gasoline product, since it does not possess the objectionable odor properties of mercaptans hence, the product has been sweetened. [Pg.94]

For gas absorption, the water or other solvent must be treated to remove the captured pollutant from the solution. The effluent from the column may be recycled into the system and used again. This is usually the case if the solvent is costly (e.g., hydrocarbon oils, caustic solutions, amphiphilic block copolymer). Initially, the recycle stream may go to a treatment system to remove the pollutants or the reaction product. Make-up solvent may then be added before the liquid stream reenters the column. [Pg.454]

Chemical Reactivity - Reactivity with Water Reacts violently to form flammable hydrocarbon gases Reactivity with Common Materials Not compatible with silicone rubber or urethane rubbers Stability During Transport Stable Neutralizing Agents for Acids and Caustics Not pertinent Polymerization Not pertinent Inhibitor of Polymerization Not pertinent. [Pg.381]

The simplest way of removing hydrogen sulfide is to scrub the hydrocarbon mixture with an aqueous solution of a strong base, such as sodium hydroxide. The hydroxide reacts with the HjS, which is a weak acid, and the hydrogen sulfide removal is quantitative even in a single contact stage. Spent caustic from this operation cannot be regenerated economically. [Pg.96]

Washing light hydrocarbons with water is a common refinery practice. It finds application on the feed to catalytic polymerization plants. It is used to remove any entrained caustic from the mercaptan removal facilities as well as any other impurities such as amines which tend to poison the polymerization catalyst. Another use for water wash is in alkylation plants to remove salts from streams, where heating would tend to deposit them out and plug up heat exchanger surfaces. Water washing can be carried out in a mixer- settler, or in a tower if more intimate contacting is necessary. [Pg.98]

Aqueous Drawoffs from Hydrocarbon Vessels - Water or aqueous materials that are withdrawn continuously or intermittently from vessels where they directly contact hydrocarbons (e.g., process water from distillate drums, and spent wash water or spent caustic solution from settlers) must be disposed of in such a way that entraimnent or inadvertent withdrawal of hydrocarbon will not create a hazard. Disposal is therefore a function of hydrocarbon category, as follows ... [Pg.223]

If the drum may occasionally receive water, caustic or similar aqueous streams, which would create problems in receiving facilities if pumped out with the hydrocarbon, then means of separate drainage should be be included. This may consist of a connection to the sewer from the bottom of the boot or in the case of sour water, a connection off the pumpout pump discharge routed to sour water facilities or other suitable disposal. [Pg.233]

The first vessel in the blowdown system is therefore an acid-hydrocarbon separator. This drum is provided with a pump to transfer disengaged acid to the spent acid tank. Disengaged liquid hydrocarbon is preferably pumped back to the process, or to slop storage or a regular non-condensible lowdown drum. The vented vapor stream from the acid-hydrocarbon separator is bubbled through a layer of caustic soda solution in a neutralizing drum and is then routed to the flare header. To avoid corrosion in the special acid blowdown system, no releases which may contain water or alkaline solutions are routed into it. [Pg.234]

Refiners use sweetening processes to remove mcr-captans that give a vei y unpleasant odor to gasolines and middle distillates (the skunk uses mercaptans to protect itself). This is done by washing the hydrocarbon stream with a caustic solution followed by a wash with water to remove die caustic. [Pg.986]

Water-in-oil macroemulsions have been proposed as a method for producing viscous drive fluids that can maintain effective mobility control while displacing moderately viscous oils. For example, the use of water-in-oil and oil-in-water macroemulsions have been evaluated as drive fluids to improve oil recovery of viscous oils. Such emulsions have been created by addition of sodium hydroxide to acidic crude oils from Canada and Venezuela. In this study, the emulsions were stabilized by soap films created by saponification of acidic hydrocarbon components in the crude oil by sodium hydroxide. These soap films reduced the oil/water interfacial tension, acting as surfactants to stabilize the water-in-oil emulsion. It is well known, therefore, that the stability of such emulsions substantially depends on the use of sodium hydroxide (i.e., caustic) for producing a soap film to reduce the oil/water interfacial tension. [Pg.202]

Caustic washing. Here, caustic solution 5-15% strength is reacted with liquid gasoline or gaseous hydrocarbons. This interacts with H2S and lower molecular-weight mercaptans and they are thus removed. [Pg.103]


See other pages where Caustic hydrocarbonates is mentioned: [Pg.410]    [Pg.410]    [Pg.241]    [Pg.317]    [Pg.496]    [Pg.510]    [Pg.510]    [Pg.511]    [Pg.413]    [Pg.506]    [Pg.26]    [Pg.26]    [Pg.26]    [Pg.26]    [Pg.119]    [Pg.171]    [Pg.191]    [Pg.209]    [Pg.224]    [Pg.225]    [Pg.101]    [Pg.104]    [Pg.224]    [Pg.224]    [Pg.226]    [Pg.39]    [Pg.345]    [Pg.926]    [Pg.66]    [Pg.393]   
See also in sourсe #XX -- [ Pg.773 ]




SEARCH



Causticity

Causticization

© 2024 chempedia.info