Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds catalysts

The most commonly used protected derivatives of aldehydes and ketones are 1,3-dioxolanes and 1,3-oxathiolanes. They are obtained from the carbonyl compounds and 1,2-ethanediol or 2-mercaptoethanol, respectively, in aprotic solvents and in the presence of catalysts, e.g. BF, (L.F. Fieser, 1954 G.E. Wilson, Jr., 1968), and water scavengers, e.g. orthoesters (P. Doyle. 1965). Acid-catalyzed exchange dioxolanation with dioxolanes of low boiling ketones, e.g. acetone, which are distilled during the reaction, can also be applied (H. J. Dauben, Jr., 1954). Selective monoketalization of diketones is often used with good success (C. Mercier, 1973). Even from diketones with two keto groups of very similar reactivity monoketals may be obtained by repeated acid-catalyzed equilibration (W.S. Johnson, 1962 A.G. Hortmann, 1969). Most aldehydes are easily converted into acetals. The ketalization of ketones is more difficult for sterical reasons and often requires long reaction times at elevated temperatures. a, -Unsaturated ketones react more slowly than saturated ketones. 2-Mercaptoethanol is more reactive than 1,2-ethanediol (J. Romo, 1951 C. Djerassi, 1952 G.E. Wilson, Jr., 1968). [Pg.165]

Addition of dihydrosilane to a, /J-unsaturated carbonyl compounds such as citral (49), followed by hydrolysis, affords saturated citroneJlal (50) directly. The reaction is used for the selective reduction of conjugated double bonds[45,46]. In addition to Pd catalyst, the use of a catalytic amount of... [Pg.518]

Triethylammonium formate is another reducing agent for q, /3-unsaturated carbonyl compounds. Pd on carbon is better catalyst than Pd-phosphine complex, and citral (49) is reduced to citronellal (50) smoothly[55]. However, the trisubstituted butenolide 60 is reduced to the saturated lactone with potassium formate using Pd(OAc)2. Triethylammonium formate is not effective. Enones are also reduced with potassium formate[56]. Sodium hypophosphite (61) is used for the reduction of double bonds catalyzed by Pd on charcoal[57]. [Pg.520]

Cycloaddition of COj with the dimethyl-substituted methylenecyclopropane 75 proceeds smoothly above 100 °C under pressure, yielding the five-membered ring lactone 76. The regiocheraistry of this reaction is different from that of above-mentioned diphenyl-substituted methylenecyclopropanes 66 and 67[61], This allylic lactone 76 is another source of trimethylenemethane when it is treated with Pd(0) catalyst coordinated by dppe in refluxing toluene to generate 77, and its reaction with aldehydes or ketones affords the 3-methylenetetrahy-drofuran derivative 78 as expected for this intermediate. Also, the lactone 76 reacts with a, /3-unsaturated carbonyl compounds. The reaction of coumarin (79) with 76 to give the chroman-2-one derivative 80 is an example[62]. [Pg.522]

The rt,/3-unsaturated linear carbonyl compound 39 is obtained by the decomposition of the cyclic hydroperoxide 38 with PdCl2,[35]. The a, 0-epoxy ketone 40 is isomerized to the /3-diketone 41 with Pd(0) catalyst[36]. The 1,4-epiperoxide 42 is converted into the /3-hydroxy ketone 43 and other products[37]. [Pg.533]

The reactivity of 2-methylselenazole toward carbonyl compounds is the same as its thiazoie homolog. Reaction of 2,4-dimethylselenazole with benzaldehyde in the presence of anhydrous zinc chloride as catalyst gives 4-methyl-2-styrylselenazoie [m.p. 74-75 C (19)] (Scheme 43). [Pg.249]

The alkyl derivatives of thiazoles can be catalytically oxidized in the vapor phase at 250 to 400°C to afford the corresponding formyl derivatives (21). Molybdenum oxide, V2O5, and tin vanadate are used as catalysts either alone or with a support. The resulting carbonyl compounds can be selectively oxidized to the acids. [Pg.521]

In general, the xanthenes are synthesized by the reaction of two moles of a nucleophilic / -substituted phenol (10) with an electrophilic carbonyl compound (11), the reaction occurring most readily with an acid catalyst at temperatures of 100—200°C. [Pg.399]

Although stoichiometric ethynylation of carbonyl compounds with metal acetyUdes was known as early as 1899 (9), Reppe s contribution was the development of catalytic ethynylation. Heavy metal acetyUdes, particularly cuprous acetyUde, were found to cataly2e the addition of acetylene to aldehydes. Although ethynylation of many aldehydes has been described (10), only formaldehyde has been catalyticaHy ethynylated on a commercial scale. Copper acetjlide is not effective as catalyst for ethynylation of ketones. For these, and for higher aldehydes, alkaline promoters have been used. [Pg.103]

Chromium compounds decompose primary and secondary hydroperoxides to the corresponding carbonyl compounds, both homogeneously and heterogeneously (187—191). The mechanism of chromium catalyst interaction with hydroperoxides may involve generation of hexavalent chromium in the form of an alkyl chromate, which decomposes heterolyticaHy to give ketone (192). The oxidation of alcohol intermediates may also proceed through chromate ester intermediates (193). Therefore, chromium catalysis tends to increase the ketone alcohol ratio in the product (194,195). [Pg.343]

Ethynylation. Base-catalyzed addition of acetylene to carbonyl compounds to form -yn-ols and -yn-glycols (see Acetylene-DERIVED chemicals) is a general and versatile reaction for the production of many commercially useful products. Finely divided KOH can be used in organic solvents or Hquid ammonia. The latter system is widely used for the production of pharmaceuticals and perfumes. The primary commercial appHcation of ethynylation is in the production of 2-butyne-l,4-diol from acetylene and formaldehyde using supported copper acetyHde as catalyst in an aqueous Hquid-fiHed system. [Pg.374]

Acetylene is condensed with carbonyl compounds to give a wide variety of products, some of which are the substrates for the preparation of families of derivatives. The most commercially significant reaction is the condensation of acetylene with formaldehyde. The reaction does not proceed well with base catalysis which works well with other carbonyl compounds and it was discovered by Reppe (33) that acetylene under pressure (304 kPa (3 atm), or above) reacts smoothly with formaldehyde at 100°C in the presence of a copper acetyUde complex catalyst. The reaction can be controlled to give either propargyl alcohol or butynediol (see Acetylene-DERIVED chemicals). 2-Butyne-l,4-diol, its hydroxyethyl ethers, and propargyl alcohol are used as corrosion inhibitors. 2,3-Dibromo-2-butene-l,4-diol is used as a flame retardant in polyurethane and other polymer systems (see Bromine compounds Elame retardants). [Pg.393]

These reversible reactions are cataly2ed by bases or acids, such as 2iac chloride and aluminum isopropoxide, or by anion-exchange resias. Ultrasonic vibrations improve the reaction rate and yield. Reaction of aromatic aldehydes or ketones with nitroparaffins yields either the nitro alcohol or the nitro olefin, depending on the catalyst. Conjugated unsaturated aldehydes or ketones and nitroparaffins (Michael addition) yield nitro-substituted carbonyl compounds rather than nitro alcohols. Condensation with keto esters gives the substituted nitro alcohols (37) keto aldehydes react preferentially at the aldehyde function. [Pg.100]

Induction of Asymmetry by Amino Acids. No fewer than sis types of reactions can be carried out with yields of 75—100% usiag amino acid catalysts, ie, catalytic hydrogenation, iatramolecular aldol cyclizations, cyanhydrin synthesis, alkylation of carbonyl compounds, hydrosdylation, and epoxidations (91). [Pg.282]

Carbonyl Compounds. Cychc ketals and acetals (dioxolanes) are produced from reaction of propylene oxide with ketones and aldehydes, respectively. Suitable catalysts iaclude stannic chloride, quaternary ammonium salts, glycol sulphites, and molybdenum acetyl acetonate or naphthenate (89—91). Lactones come from Ph4Sbl-cataly2ed reaction with ketenes (92). [Pg.135]

PlCtet-SpenglerSynthesis. An acidic catalyst results in the condensation of P-pbenetbylamines with carbonyl compounds to give... [Pg.396]

Manufacture. Trichloromethanesulfenyl chloride is made commercially by chlorination of carbon disulfide with the careful exclusion of iron or other metals, which cataly2e the chlorinolysis of the C—S bond to produce carbon tetrachloride. Various catalysts, notably iodine and activated carbon, are effective. The product is purified by fractional distillation to a minimum purity of 95%. Continuous processes have been described wherein carbon disulfide chlorination takes place on a granular charcoal column (59,60). A series of patents describes means for yield improvement by chlorination in the presence of dihinctional carbonyl compounds, phosphonates, phosphonites, phosphites, phosphates, or lead acetate (61). [Pg.132]

Tertiary stibines have been widely employed as ligands in a variety of transition metal complexes (99), and they appear to have numerous uses in synthetic organic chemistry (66), eg, for the olefination of carbonyl compounds (100). They have also been used for the formation of semiconductors by the metal—organic chemical vapor deposition process (101), as catalysts or cocatalysts for a number of polymerization reactions (102), as ingredients of light-sensitive substances (103), and for many other industrial purposes. [Pg.207]

Some catalysts are ha2ardous materials, or they react to form ha2ardous substances. For example, catalysts used for hydrogenation of carbon monoxide form volatile metal carbonyl compounds such as nickel carbonyl, which are highly toxic. Many catalysts contain heavy metals and other ha2ardous components, and environmentally safe disposal has become an increasing concern and expense. [Pg.174]

High yields of optically active cyanohydrins have been prepared from hydrogen cyanide and carbonyl compounds using an enzyme as catalyst. Reduction of these optically active cyanohydrins with lithium aluminum hydride in ether affords the corresponding substituted, optically active ethanolamine (5) (see Alkanolamines). [Pg.411]

Polymerization of olefins such as styrene is promoted by acid or base or sodium catalysts, and polyethylene is made with homogeneous peroxides. Condensation polymerization is catalyzed by acid-type catalysts such as metal oxides and sulfonic acids. Addition polymerization is used mainly for olefins, diolefins, and some carbonyl compounds. For these processes, initiators are coordination compounds such as Ziegler-type catalysts, of which halides of transition metals Ti, V, Mo, and W are important examples. [Pg.2095]

A carbonyl group can be protected as a sulfur derivative—for example, a dithio acetal or ketal, 1,3-dithiane, or 1,3-dithiolane—by reaction of the carbonyl compound in the presence of an acid catalyst with a thiol or dithiol. The derivatives are in general cleaved by reaction with Hg(II) salts or oxidation acidic hydrolysis is unsatisfactory. The acyclic derivatives are formed and hydrolyzed much more readily than their cyclic counterparts. Representative examples of formation and cleavage are shown below. [Pg.198]

Chapters 1 and 2. Most C—H bonds are very weakly acidic and have no tendency to ionize spontaneously to form carbanions. Reactions that involve carbanion intermediates are therefore usually carried out in the presence of a base which can generate the reactive carbanion intermediate. Base-catalyzed condensation reactions of carbonyl compounds provide many examples of this type of reaction. The reaction between acetophenone and benzaldehyde, which was considered in Section 4.2, for example, requires a basic catalyst to proceed, and the kinetics of the reaction show that the rate is proportional to the catalyst concentration. This is because the neutral acetophenone molecule is not nucleophihc and does not react with benzaldehyde. The much more nucleophilic enolate (carbanion) formed by deprotonation is the reactive nucleophile. [Pg.229]

The study of the chemistry of carbonyl compounds has shown that they can act as carbon nucleophiles in the presence of acid catalysts as well as bases. The nucleophilic reactivity of carbonyl compounds in acidic solution is due to the presence of the enol tautomer. Enolization in acidic solution is catalyzed by O-protonation. Subsequent deprotonation at carbon gives the enol ... [Pg.425]

Thiocarbonyl compounds can be converted into difluoromethylene compounds usually under milder conditions than the conesponding carbonyl compounds Ethylene trithiocarbonate reacts smoothly with sulfur tetrafluoride at 110 °C in the absence of catalyst to give 2,2-difluoro-l,3-dithiolane in high yield. Thiuramsul/ides under similar conditions are readily converted into dialkyItrifluo-rometkylamines [11] (equations 13 and 14). [Pg.267]

Triflates of titanium and tin are effective catalysts for various condensations of carbonyl compounds [I2I, 122, 123, 124, 125] Claisen and Dieckmann type condensations between ester functions proceed under mild conditions in the presence of dichlorobis(trifluoromethanesulfonyloxy)titaiiiuin(rV) and a tertiary amine (equations 59 and 60) These highly regio- and stereoselective condensations were used successfully m the synthesis of carbohydrates [122]... [Pg.964]


See other pages where Carbonyl compounds catalysts is mentioned: [Pg.182]    [Pg.182]    [Pg.23]    [Pg.104]    [Pg.364]    [Pg.531]    [Pg.535]    [Pg.573]    [Pg.934]    [Pg.551]    [Pg.488]    [Pg.111]    [Pg.414]    [Pg.357]    [Pg.229]    [Pg.228]    [Pg.488]    [Pg.234]    [Pg.934]    [Pg.296]   
See also in sourсe #XX -- [ Pg.257 ]

See also in sourсe #XX -- [ Pg.257 ]

See also in sourсe #XX -- [ Pg.6 , Pg.257 ]




SEARCH



Carbonyl compounds cinchona-based catalysts

Carbonyl compounds palladium chloride catalysts

Carbonyl compounds quaternary ammonium catalysts

Carbonyl compounds transition metal catalysts

Carbonylation catalysts

Catalyst carbonyl

Catalysts aromatic carbonyl compounds

Catalysts carbonyl compound reduction

Catalysts compounds

Catalysts unsaturated carbonyl compounds

Furan, 2,5-bis reaction with carbonyl compounds titanium tetrachloride catalyst

Metal carbonyl compound catalysts

Rhodium, chlorotris catalyst silane reaction with carbonyl compounds

Tantalum catalysts carbonyl compounds

Titanium catalysts carbonyl compounds

Tungsten catalysts carbonyl compounds

© 2024 chempedia.info