Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyanohydrins optically active

Many other hydroxy compounds bearing a secondaiy hydroxy group can be enan-tioselectively acylated. In the case of a few cyanohydrins, optically active acetates are prepared in a one-pot procedure from the aldehyde and acetone cyanohydrin, followed by a lipase-catalyzed transesterification [196]. Also, 2-hydroxy acids and esters [197-201] can be enzymatically resolved, as shown in Scheme 43. [Pg.433]

High yields of optically active cyanohydrins have been prepared from hydrogen cyanide and carbonyl compounds using an enzyme as catalyst. Reduction of these optically active cyanohydrins with lithium aluminum hydride in ether affords the corresponding substituted, optically active ethanolamine (5) (see Alkanolamines). [Pg.411]

The cyanohydrin-forming addition of cyanide or cyanide equivalents (e.g.. cyanotrimethylsilane) to optically active a-amino aldehydes occurs diastereoselectively. [Pg.94]

Today, the most promising synthesis of optically active cyanohydrins, especially with respect to the enantioselectivity of the reaction, is the enzyme-catalyzed addition of hydrogen cyanide to aldehydes and ketones, respectively. [Pg.667]

Very few optically active cyanohydrins, derived from ketones, are described in the literature. High diastcrcosclectivity is observed for the substrate-controlled addition of hydrocyanic acid to 17-oxosteroids27 and for the addition of trimethyl(2-propenyl)silane to optically active acyl cyanides28. The enantioselective hydrolysis of racemic ketone cyanohydrin esters with yeast cells of Pichia miso occurs with only moderate chemical yields20. [Pg.669]

The procedure is modified for the reaction of preformed cyanohydrins with chiral amines39. I11 a further variation, Schiff bases of aliphatic aldehydes with optically active 1-arylalkyl-amines are transformed with liquid hydrogen cyanide to the corresponding a-aminonitrilcs, which, after acid hydrolysis, give the /V-aryUilkylamino acids. Hydrogenation then yields the a-amino acids40 41. [Pg.786]

In 1992, Oda et al. reported a one-pot synthesis of optically active cyanohydrin acetates from aldehydes, which were converted to the corresponding racemic cyanohydrins through transhydrocyanation with acetone cyanohydrin, catalyzed by a a strongly basic anion-exchange resin [46]. The racemic cyanohydrins were acetylated by a lipase from P. cepacia (Amano) with isopropenyl acetate as the acyl donor. The reversible nature of the base-catalyzed transhydrocyanation enabled continuous racemization of the unreacted cyanohydrins, thereby effecting a total conversion (Figure 4.21). [Pg.103]

The addition is nucleophilic and the actual nucleophile is CN , so the reaction rate is increased by the addition of base. This was demonstrated by Lapworth in 1903, and consequently this was one of the first organic mechanisms to be known. The reaction has been carried out enantioselectively optically active cyanohydrins were prepared with the aid of optically active catalysts. ... [Pg.1240]

It is interesting to note that in the case of R, an optically active cyanohydrin results in all known cases of cyanogenesis. For the enzymatic... [Pg.141]

Synthesis of optically active cyanohydrins using almond meal... [Pg.144]

Kragl and coworkers investigated using organic-solvent-free systems to overcome the thermodynamic limitations in the synthesis of optically active ketone cyanohydrins. With organic-solvent-free systems under optimized reaction conditions, conversions up to 78% with > 99.0 enantiomeric excess (ee) (S) were obtained. Finally, 5 mL of (S)-acetophenone cyanohydrin with an ee of 98.5% was synthesized using MeHNL [52]. [Pg.112]

Purified MeHNL was crystallized by the sitting-drop vapor-diffusion method. The 10-20 mm bipyramidal crystals formed were cross-linked with glutaraldehyde and used as biocatalyst for the synthesis of optically active cyanohydrins. The cross-linked crystals were more stable than Celite-immobilized enzymes when incubated in organic solvents, especially in polar solvents. After six consecutive batch reactions in dibutyl ether, the remaining activity of the cross-linked crystals was more than 70 times higher than for the immobilized enzymes. Nevertheless, the specific activity of the cross-linked crystals per milligram protein was reduced compared with the activity of Celite-immobilized enzymes [53],... [Pg.112]

Costes, D., Wehtje, E. and Adlercreutz, P. (2001) Cross-linked crystals of hydroxynitrile lyase as catalyst for the synthesis of optically active cyanohydrins. Journal of Molecular Catalysis B-Enzymatic, 11, 607-612. [Pg.122]

Duffield, J.J. and Regan, A.C. (1996) Asymmetric synthesis of tetronic acids by Blaise reaction of protected optically active cyanohydrins. Tetrahedron Asymmetry, 7, 663-666. [Pg.123]

Biihler, H., Bayer, A. and Effenberger, F. (2000) Enzyme-catalyzed reactions, part 39. A convenient synthesis of optically active 5,5-disubstituted 4-amino- and 4-hydroxy-2(5f/)-furanones from (5)-ketone cyanohydrins. Chemistry - A European Journal, 6, 2564—2571. [Pg.124]

The first report on the reaction of D-pseudoephedrine 66 with phosphoryl chloride appeared as early as 1962 [49], More recently it was found that this condensation gave 2-chloro-l,3,2-oxazaphospholidine 2-oxides 67 as a single diastereomer which was subsequently esterified with racemic aldehyde cyanohydrins 68 without racemization at the phosphorus atom. The prepared diastereomeric esters 69 were used as substrates for the asymmetric synthesis of optically active cyanohydrins 72, which involves the intermediate formation of the tertiary esters 70, as shown in Scheme 22 [50],... [Pg.115]

Scheme 22 Asymmetric synthesis of optically active cyanohydrins 72... Scheme 22 Asymmetric synthesis of optically active cyanohydrins 72...
Indeed the only conversion where biocatalysis should be seriously considered is the transformation of aldehydes into optically active cyanohydrins1 2. For example, the conversion of aryl aldehydes into the appropriate (R)-cyanohydrins using almond meal may be accomplished in quantitative yield and gives products... [Pg.28]

The addition of trimethylsilyl (TMS) cyanide to aldehydes produces TMS-protected cyanohydrins. In a recent investigation a titanium salen-type catalyst has been employed to catalyse trimethylsilylcyanide addition to benzaldehyde at ambient temperature1118]. Several other protocols have been published which also lead to optically active products. One of the more successful has been described by Abiko et al. employing a yttrium complex derived from the chiral 1,3-diketone (41)[119] as the catalyst, while Shibasaki has used BINOL, modified so as to incorporate Lewis base units adjacent to the phenol moieties, as the chiral complexing agent11201. [Pg.29]

Biomimetic reactions should also be considered for the preparation of optically active cyanohydrins (using a cyclic dipeptide as catalyst) and also for the epoxidation of a, (3-unsaturated ketones (using polyleucine or congener as a catalyst). [Pg.40]

This example (the cyanohydrin reaction) appears to me to provide a simple solution for the natural asymmetric synthesis. The formation of the sugar, as the plant physiologists assume, occurs in the chlorophyll grain, which itself is composed of optically active substances.. . . The prepared sugar is released and later on used by the plant, as is known, for the preparation of other organic components. Their asymmetry is thus explainedfrom the nature of the building material. Of course, they also provide material for new chlorophyll... [Pg.14]

Since the reaction has been reviewed recently (12) only a few additional facts will be mentioned. Many optically active cyanohydrins can be prepared (33) with e.e. s of 84 to 100% by the use of the flavopnotein D-oxynitrilase adsorbed on special (34) cellulose ion-exchange resins. Although the enzyme is stable, permitting the use of a continuously operating column, naturally only one enantiomer, usually the R isomer, is produced in excess. This (reversible) enzyme-catalyzed reaction is very rapid (34). Nonenzymic catalysts, such as the cinchona alkaloids, permit either enantiomer to be prepared in excess. [Pg.95]

The production of optically active cyanohydrins, with nitrile and alcohol functional groups that can each be readily derivatized, is an increasingly significant organic synthesis method. Hydroxynitrile lyase (HNL) enzymes have been shown to be very effective biocatalysts for the formation of these compounds from a variety of aldehyde and aliphatic ketone starting materials.Recent work has also expanded the application of HNLs to the asymmetric production of cyanohydrins from aromatic ketones. In particular, commercially available preparations of these enzymes have been utilized for high ee (5)-cyanohydrin synthesis from phenylacetones with a variety of different aromatic substitutions (Figure 8.1). [Pg.259]

Roberge, C., Fleitz, F., Pollard, D. and Devine, P., Synthesis of optically active cyanohydrins from aromatic ketones evidence of an increased substrate range and inverted stereoselectivity for the hydroxynitrile lyase from Linum usitatissimum. Tetrahedron Asymm., 2007,18, 208. [Pg.261]

Schmidt, M., Herve, S., Klempier, N. and Griegl, H., Preparation of optically active cyanohydrins using the (5)-hydroxynitrile lyas from Hevea brasiliensis. Tetrahedron, 1996, 52, 7833. [Pg.268]

The reaction mixture was extracted three times with 50 mL ethyl acetate. The organic layer was dried over anhydrous Na2S04 and concentrated by evaporation in vacuo. After the residue had been dried, optically active cyanohydrin was obtained, as shown... [Pg.271]

Inagaki, M. Hiratake, J. Nishioka, T Oda, J. One-pot synthesis of optically active cyanohydrin acetates from aldehydes via lipase-catalyzed kinetic resolution coupled with in situ formation and racemization of cyanohydrins. J. Org. Chem. 1992, 57, 5643-5649. [Pg.197]

Optically active cyanohydrins are obtained in good selectivity by the nucleophilic attack of cyanating reagents to chiral acetals.(21) However, the chiral auxiliaries are destroyed, and not recovered. In catalytic processes with chiral boryl compounds,(22) D-oxynitrilase,(23) and synthetic peptides,(24) the optical purities of the resulting cyanohydrins are generally not sufficient. [Pg.301]


See other pages where Cyanohydrins optically active is mentioned: [Pg.402]    [Pg.81]    [Pg.667]    [Pg.142]    [Pg.142]    [Pg.148]    [Pg.159]    [Pg.122]    [Pg.122]    [Pg.123]    [Pg.123]    [Pg.123]    [Pg.144]    [Pg.120]    [Pg.121]    [Pg.40]    [Pg.183]    [Pg.197]    [Pg.120]    [Pg.315]    [Pg.302]    [Pg.303]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Cyanohydrine

Cyanohydrins

© 2024 chempedia.info