Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Keto groups

The initial step in the pathway is the condensation of erythrose-4-phosphale with phosphoenolpyruvate, yielding dehydroquinic acid, which by elimination of the elements of water affords dehydroshikimic acid reduction of the 3-keto group to hydroxyl gives shikimic acid. [Pg.357]

The Mannich Reaction involves the condensation of formaldehyde with ammonia or a primary or secondary amine and with a third compound containing a reactive methylene group these compounds are most frequently those in which the methylene group is activated by a neighbouring keto group. Thus when acetophenone is boiled in ethanolic solution with paraformaldehyde and dimethylamine hydrochloride, condensation occurs readily with the formation of... [Pg.261]

The former exhibits absorption tjrpical of an isolated keto group, whereas the latter shows a high intensity -band associated with the conjugated system HO—C=C—C=0. The proportions of the two forms under various conditions are readily determined from the ultraviolet spectra. The ultraviolet spectra in various solvents are shown in Fig. A, 7, 2. Since the absorption of the keto form is negligible, the percentage of enol present is 100(em/e ), where e is the observed extinction at 245 mp. and that of the pure enol. It was shown that in alcoholic solution is 1900 and the percentage of enol is 12. Thus e is ca. 16000, and use of this value permits the approximate evaluation of the enol content in different solvents. The results are collected in Table XII. [Pg.1148]

The synthesis of spiro compounds from ketones and methoxyethynyl propenyl ketone exemplifies some regioselectivities of the Michael addition. The electrophilic triple bond is attacked first, next comes the 1-propenyl group. The conjugated keto group is usually least reactive. The ethynyl starting material has been obtained from the addition of the methoxyethynyl anion to the carbonyl group of crotonaldehyde (G. Stork, 1962 B, 1964A). [Pg.74]

The most commonly used protected derivatives of aldehydes and ketones are 1,3-dioxolanes and 1,3-oxathiolanes. They are obtained from the carbonyl compounds and 1,2-ethanediol or 2-mercaptoethanol, respectively, in aprotic solvents and in the presence of catalysts, e.g. BF, (L.F. Fieser, 1954 G.E. Wilson, Jr., 1968), and water scavengers, e.g. orthoesters (P. Doyle. 1965). Acid-catalyzed exchange dioxolanation with dioxolanes of low boiling ketones, e.g. acetone, which are distilled during the reaction, can also be applied (H. J. Dauben, Jr., 1954). Selective monoketalization of diketones is often used with good success (C. Mercier, 1973). Even from diketones with two keto groups of very similar reactivity monoketals may be obtained by repeated acid-catalyzed equilibration (W.S. Johnson, 1962 A.G. Hortmann, 1969). Most aldehydes are easily converted into acetals. The ketalization of ketones is more difficult for sterical reasons and often requires long reaction times at elevated temperatures. a, -Unsaturated ketones react more slowly than saturated ketones. 2-Mercaptoethanol is more reactive than 1,2-ethanediol (J. Romo, 1951 C. Djerassi, 1952 G.E. Wilson, Jr., 1968). [Pg.165]

The 1,6-difunctional hydroxyketone given below contains an octyl chain at the keto group and two chiral centers at C-2 and C-3 (G. Magnusson, 1977). In the first step of the antithesis of this molecule it is best to disconnect the octyl chain and to transform the chiral residue into a cyclic synthon simultaneously. Since we know that ketones can be produced from add derivatives by alkylation (see p. 45ff,), an obvious precursor would be a seven-membered lactone ring, which is opened in synthesis by octyl anion at low temperature. The lactone in turn can be transformed into cis-2,3-dimethyicyclohexanone, which is available by FGI from (2,3-cis)-2,3-dimethylcyclohexanol. The latter can be separated from the commercial ds-trans mixture, e.g. by distillation or chromatography. [Pg.206]

Diketones and tetraketones derived from aromatic compounds by conversion of two or four SCH groups into keto groups, with any necessary rearrangement of double bonds to a quinonoid structure, are named by adding the suffix -quinone and any necessary affixes. [Pg.33]

AHylestrenol (37) is prepared from (32), an intermediate in the synthesis of norethindrone. Treatment of (32) with ethanedithiol and catalytic boron trifluoride provides a thioketal. Reduction with sodium in Hquid ammonia results in the desired reductive elimination of the thioketal along with reduction of the 17-keto group. Oxidation of this alcohol with chromic acid in acetone followed by addition of aHyl magnesium bromide, completes the synthesis... [Pg.212]

Lynestrenol is the des-3-oxo derivative of norethindrone (28). It has been prepared through a similar synthetic pathway as aHylestrenol (37) (52), ie, addition of potassium acetyUde, rather than aHyl magnesium bromide, affords lynestrenol (73). Lynestrenol is also available from norethindrone (28). Reduction of the 3-keto group is accompHshed by treating norethindrone (28) with sodium borohydride in the presence of trifluoro- or trichloroacetic acid... [Pg.216]

Only the reduction products involving the keto groups are of any academic or industrial importance. Complete reduction of the keto groups by ammonia and zinc (von Perger method) gives rise to anthracene in good yields and quaUty (10). This method is of importance since substituted anthracenes can be prepared from the corresponding anthraquinones. Industrially, an important dyestuff intermediate, 3-chloroanthracene-2-carboxyhc acid, (2) is prepared by this method (11) from 3-chloroanthraquinone-2-carboxyhc acid [84-32-2]... [Pg.420]

Ring closure of o-benzoylbenzoic acid to anthraquinone is an unusual reaction in that normally it is not predicted to occur ortho to a keto group. Several theories have been proposed to explain the mechanism whereby this could possibly occur. One involves a complex ionization of o-benzoylbenzoic acid (41), the other favors the intermediate formation of 3-hydroxy-3-phenyl-l(3JT)isobenzofuranone (9) [64693-03-4] and 3-phenylphthaHdyl sulfate (10) (42) ... [Pg.423]

Sulfur dyes are appHed to leuco form. In this form, the dye has affinity for the fiber. After the dye is completely absorbed by the fiber, it is reoxidized in situ. In dyes, such as the bright blues which contain quinonimine groups, further reduction takes place in a manner similar to the reduction of the keto group in vat dyes. [Pg.170]

The second widely used class of yeHow couplers is the pi val oyl a ceta n il i des (7) and related compounds bearing a fully substituted carbon adjacent to the keto group. The dyes from these couplers tend to show significantly improved light stabHity and so these couplers have been widely adopted for use in color papers as weH as many projection materials. In general, the dyes have more narrow bandwidths and less unwanted green absorptions (67). [Pg.476]

Synthesis of steroidal diazirines has led to some biologically active compounds (65JA2665). The observation that diazirines and their parent ketones are identical in smell (B-67MI50800), points to the possibility that a diazirine group may stand for a keto group vis-d-vis a receptor. [Pg.236]

Reaction of triethylsilyl hydrotrfoxide with electron-rich olefins to gh/e dioxetanes that react IntrarTMlecularly with a keto group in the presence of t-txrtyidimethyl silyl triflateto afford 1,2,4 Inoxanes also oxydatnre cleavage ol alkenes Also used in cleavage ol olefins... [Pg.304]

Other polyamides produced experimentally include polymers with active lateral groups (hydroxy, keto groups etc.), polymers with heteroatoms (sulphur and oxygen) in the polyamide-forming intermediates, polymers with tertiary amino groups in the main chain and polymers with unsaturation in the main chain. There does not, however, appear to have been any serious attempt to develop unsaturated polyamide analogues to the polyester laminating resins. [Pg.509]

Free aldehyde and keto groups [1 — 3] e.g. in aldoses and ketoses... [Pg.273]


See other pages where Keto groups is mentioned: [Pg.139]    [Pg.278]    [Pg.450]    [Pg.450]    [Pg.910]    [Pg.109]    [Pg.156]    [Pg.205]    [Pg.209]    [Pg.211]    [Pg.248]    [Pg.249]    [Pg.267]    [Pg.274]    [Pg.278]    [Pg.33]    [Pg.101]    [Pg.213]    [Pg.215]    [Pg.234]    [Pg.380]    [Pg.383]    [Pg.152]    [Pg.262]    [Pg.272]    [Pg.428]    [Pg.28]    [Pg.111]    [Pg.228]    [Pg.832]    [Pg.48]    [Pg.65]   
See also in sourсe #XX -- [ Pg.176 ]

See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Aldehyde and Keto Groups

Aldol condensation with keto groups

C-13 keto group

Differentiation Between Keto and Aldehyde Groups

Epimerization via keto groups

From Rings with an Endocyclic Keto Group Adjacent to a Replaceable Hydrogen Atom

Hydrogenolysis of activated keto groups

Ketals keto groups

Keto Derivatives of Group IV Organometalloids

Keto acids, esterification groups

Keto group, formation

Keto groups, addition

Keto groups, free

Keto-carbonyl groups

Lignin 3-keto groups

Mass keto groups

Of keto group

Reduction of keto group

Retention keto groups

Steroids keto group

© 2024 chempedia.info