Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium catalysts carbonyl compounds

Triflates of titanium and tin are effective catalysts for various condensations of carbonyl compounds [I2I, 122, 123, 124, 125] Claisen and Dieckmann type condensations between ester functions proceed under mild conditions in the presence of dichlorobis(trifluoromethanesulfonyloxy)titaiiiuin(rV) and a tertiary amine (equations 59 and 60) These highly regio- and stereoselective condensations were used successfully m the synthesis of carbohydrates [122]... [Pg.964]

The interest in chiral titanium(IV) complexes as catalysts for reactions of carbonyl compounds has, e.g., been the application of BINOL-titanium(IV) complexes for ene reactions [8, 19]. In the field of catalytic enantioselective cycloaddition reactions, methyl glyoxylate 4b reacts with isoprene 5b catalyzed by BINOL-TiX2 20 to give the cycloaddition product 6c and the ene product 7b in 1 4 ratio enantio-selectivity is excellent - 97% ee for the cycloaddition product (Scheme 4.19) [28]. [Pg.165]

Metal-induced reductive dimerization of carbonyl compounds is a useful synthetic method for the formation of vicinally functionalized carbon-carbon bonds. For stoichiometric reductive dimerizations, low-valent metals such as aluminum amalgam, titanium, vanadium, zinc, and samarium have been employed. Alternatively, ternary systems consisting of catalytic amounts of a metal salt or metal complex, a chlorosilane, and a stoichiometric co-reductant provide a catalytic method for the formation of pinacols based on reversible redox couples.2 The homocoupling of aldehydes is effected by vanadium or titanium catalysts in the presence of Me3SiCl and Zn or A1 to give the 1,2-diol derivatives high selectivity for the /-isomer is observed in the case of secondary aliphatic or aromatic aldehydes. [Pg.15]

The solvent process involves treating phthalonitrile with any one of a number of copper salts in the presence of a solvent at 120 to 220°C [10]. Copper(I)chloride is most important. The list of suitable solvents is headed by those with a boiling point above 180°C, such as trichlorobenzene, nitrobenzene, naphthalene, and kerosene. A metallic catalyst such as molybdenum oxide or ammonium molybdate may be added to enhance the yield, to shorten the reaction time, and to reduce the necessary temperature. Other suitable catalysts are carbonyl compounds of molybdenum, titanium, or iron. The process may be accelerated by adding ammonia, urea, or tertiary organic bases such as pyridine or quinoline. As a result of improved temperature maintenance and better reaction control, the solvent method affords yields of 95% and more, even on a commercial scale. There is a certain disadvantage to the fact that the solvent reaction requires considerably more time than dry methods. [Pg.426]

Tertiary amines are oxidized to the corresponding nitrogen oxides. Tosyl hydrazones of ketones and aldehydes and imines are oxidized to the corresponding carbonyl compounds. Reactions have been carried out with small molecules and also with molecules that would not diffuse into the pore structure of the titanium silicates. As in the case of C—C bond cleavage, it is possible that these reactions take place on the outer surface of the catalyst crystals. [Pg.316]

This procedure illustrates a general method for the preparation of crossed aldols. The aldol reaction between various silyl enol ethers and carbonyl compounds proceeds smoothly according to the same procedure (see Table I). Sllyl enol ethers react with aldehydes at -78°C, and with ketones near 0°C. Note that the aldol reaction of sllyl enol ethers with ketones affords good yields of crossed aldols which are generally difficult to prepare using lithium or boron enolates. Lewis acids such as tin tetrachloride and boron trifluoride etherate also promote the reaction however, titanium tetrachloride is generally the most effective catalyst. [Pg.5]

Since the introduction of the titanocene chloride dimer 67a to radical chemistry, much attention has been paid to render these reactions catalytic. This field was reviewed especially thoroughly for epoxides as substrates [123, 124, 142-145] so only catalyzed reactions using non-epoxide precursors and a few very recent examples of titanium-catalyzed epoxide-based cyclization reactions, which illustrate the principle, will be discussed here. A very useful feature of these reactions is that their rate constants were determined very recently [146], The reductive catalytic radical generation using 67a is not limited to epoxides. Oxetanes can also act as suitable precursors as demonstrated by pinacol couplings and reductive dimerizations [147]. Moreover, 5 mol% of 67a can serve as a catalyst for the 1,4-reduction of a, p-un saturated carbonyl compounds to ketones using zinc in the presence of triethylamine hydrochloride to regenerate the catalyst [148]. [Pg.143]

In 1995 Carreira et al. [19] reported a catalytic variant of the asymmetric carbonyl-ene reaction (Scheme Ha). By treatment of the aldehyde 60 with 2 mol % of titanium catalyst 35, already used in the Mukaiyama aldol reaction, the / -hy-droxyketone 61 is formed in quantitative yield and with an excellent ee value. Here, the ene-compound, 2-methoxypropene, is used simultaneously as solvent in a large excess. The high en-antioselectivity is still limited to aldehydes similar to 60 benzaldehyde for instance is converted with an ee of only 66 %. [Pg.150]

Phenylthioalkylation of silyl enol ethers. Silyl enol ethers of ketones, aldehydes, esters, and lactones can be alkylated regiospecifically by a -chloroalkyl phenyl sulfides in fhe presence of a Lewis acid. Zinc bromide and titanium(IV) chloride are the most effective catalysts. The former is more satisfactory for enol ethers derived from esters and lactongs. ZnBr2 and TiCL are about equally satisfactory for enol ethers of ketones. The combination of TiCL and Ti(0-f-Pr)4 is more satisfactory for enol ethers of aldehydes. Since the products can be desulfurized by Raney nickel, this reaction also provides a method for alkylation of carbonyl compounds. Of more interest, sulfoxide elimination provides a useful route to a,B-unsaturated carbonyl compounds. [Pg.567]

The Diels-Alder reaction is one of the most fundamental means of preparing cyclic compounds. Since discovery of the accelerating effect of Lewis acids on the Diels-Alder reaction of a,)3-unsaturated carbonyl compounds [341-344], its broad and fine application under mild reaction conditions has been amplified. Equations (140) [341] and (141) [345], respectively, illustrate typical dramatic effects from an early reaction and from one reported more recently. Lewis acid-promoted Diels-Alder reactions have been reviewed [7,8,346-353]. In addition to the acceleration of the reaction, other important feature is its alteration of chemo-, regio-, and diastereoselectivity this will be discussed below. The titanium compounds used in Diels-Alder reaction are titanium halides (TiX4), alkoxides (Ti(OR)4), or their mixed salts (TiX (OR)4 n = 1-3). A cyclopentadienyl complex such as Cp2Ti(OTf)2 is also documented as a very effective promoter of a Diels-Alder reaction [354], In addition to these titanium salts, a few compounds such as those in Eq. (142) [355] have recently been reported to effect the Diels-Alder reaction. The third, [(/-PrO)2Ti(bpy)(OTf)(i-PrOH)] (OTf), was estimated to be a more active catalyst than Cp2Ti(OTf)2. [Pg.709]

Vanhoye and coworkers [402] synthesized aldehydes by using the electrogenerated radical anion of iron pentacarbonyl to reduce iodoethane and benzyl bromide in the presence of carbon monoxide. Esters can be prepared catalytically from alkyl halides and alcohols in the presence of iron pentacarbonyl [403]. Yoshida and coworkers reduced mixtures of organic halides and iron pentacarbonyl and then introduced an electrophile to obtain carbonyl compounds [404] and converted alkyl halides into aldehydes by using iron pentacarbonyl as a catalyst [405,406]. Finally, a review by Torii [407] provides references to additional papers that deal with catalytic processes involving complexes of nickel, cobalt, iron, palladium, rhodium, platinum, chromium, molybdenum, tungsten, manganese, rhenium, tin, lead, zinc, mercury, and titanium. [Pg.368]

The incorporation of Ti into various framework zeolite structures has been a very active research area, particularly during the last 6 years, because it leads to potentially useful catalysts in the oxidation of various organic substrates with diluted hydrogen peroxide [1-7]. The zeolite structures, where Ti incorporation has been achieved are ZSM-5 (TS-1) [1], ZSM-11 (TS-2) [2] ZSM-48 [3] and beta [4]. Recently, mesoporous titanium silicates Ti-MCM-41 and Ti-HMS have also been reported [5]. TS-1 and TS-2 were found to be highly active and selective catalysts in various oxidation reactions [6,7]. All other Ti-modified zeolites and molecular sieves had limited but interesting catalytic activities. For example, Ti-ZSM-48 was found to be inactive in the hydroxylation of phenol [8]. Ti-MCM-41 and Ti-HMS catalyzed the oxidation of very bulky substrates like 2,6-di-tert-butylphenol, norbomylene and a-terpineol [5], but they were found to be inactive in the oxidation of alkanes [9a], primary amines [9b] and the ammoximation of carbonyl compounds [9a]. As for Ti-P, it was found to be active in the epoxidation of alkenes and the oxidation of alkanes and alcohols [10], even though the conversion of alkanes was very low. Davis et al. [11,12] also reported that Ti-P had limited oxidation and epoxidation activities. In a recent investigation, we found that Ti-P had a turnover number in the oxidation of propyl amine equal to one third that of TS-1 and TS-2 [9b]. As seen, often the difference in catalytic behaviors is not attributable to Ti sites accessibility. [Pg.309]

The direct selenoacetalization of carbonyl compounds by selenols is by far the shortest and most convenient route to selenoacetals. The reaction is usually carried out at 20 C with zinc chloride (0.5 equiv. versus the carbonyl con x>und) and delivers rapidly (<3 h) and in reasonably good yields methyl and phenyl selenoacetals derived from aliphatic aldehydes and ketones and cyclic ketones (Scheme 69). Selenoacetalization is more difficult to achieve with hindered ketones, such as adamantanone and diisopropyl ketone, and with hindered aromatic carbtmyl compounds. In these cases the reaction is best achieved with titanium tetrachloride instead of zinc chloride and is often limited to the methylseleno derivatives (Scheme 78). Tris(methylseleno)borane offers the advantage of not requiring an acid catalyst and is particularly useful for the selenoacetalization of acid labQe aldehydes such as citronellal (Scheme 70, e). [Pg.656]

Many other metal ions have been reported as catalysts for oxidations of paraffins or intermediates. Some of the more frequently mentioned ones include cerium, vanadium, molybdenum, nickel, titanium, and ruthenium [21, 77, 105, 106]. These are employed singly or in various combinations, including combinations with cobalt and/or manganese. Activators such as aldehydes or ketones are frequently used. The oxo forms of vanadium and molybdenum may very well have the heterolytic oxidation capability to catalyze the conversion of alcohols or hydroperoxides to carbonyl compounds (see the discussion of chromium, above). There is reported evidence that Ce can oxidize carbonyl compounds via an enol mechanism [107] (see discussion of manganese, above). Although little is reported about the effectiveness of these other catalysts for oxidation of paraffins to acetic acid, tests conducted by Hoechst Celanese have indicated that cerium salts are usable catalysts in liquid-phase oxidation of butane [108]. [Pg.540]

Polymer-supported titanium catalysts can be regenerated. A series of polymer-supported CpCp TiC (Cp = polymer substituted Gp rings) has been reduced by PPMgBr in situ, and used as catalysts for the hydrogenation of styrene, the isomerization of 1,5-cyclooctadiene and 1,5-hexadiene, and the reduction of carbonyl compounds. In some cases, the introduction of a polymer ligand on the Cp ring restricts the aggregation of active sites and the formation of inactive dimeric titanium species, and results in an activity increase. [Pg.660]

Chiral titanium complexes 4 and 5, which were developed as chiral catalysts for asymmetric carbonyl-ene reactions with prochiral glyoxylate esters [50], were first apphed to the catalytic asymmetric allylation of carbonyl compounds by Mikami and Nakai (Scheme 5) [9]. The titanium catalysts are prepared from (S)-binaphthol and diisopropoxytitanium dihahde (X=C1 and Br) in the presence of 4 A molecular sieves. Using these catalysts, glyoxylates are enantio- and diastereoselectively allylated with allylic trimethylsilanes or allylic tributylstan-nanes. High levels of enantioselectivity and syn selectivity are observed for (E)-crotylsilane and -stannane. The syn selective allylation reaction is believed to proceed mainly through an antiperiplanar transition state. [Pg.917]

The catalytic [2 + 2 + 1]-cycloaddition reaction of two carbon—carbon multiple bonds with carbon monoxide has become a general synthetic method for five-membered cyclic carbonyl compounds. In particular, the Pauson-Khand reaction has been widely investigated and established as a powerful tool to synthesize cyclopentenone derivatives.110 Various kinds of transition metals, such as cobalt, titanium, ruthenium, rhodium, and iridium, are used as a catalyst for the Pauson-Khand reaction. The intramolecular Pauson-Khand reaction of the allyl propargyl ether and amine 91 produces the bicyclic ketones 93, which bear a heterocyclic ring as shown in Scheme 31. The reaction proceeds through formation of the bicyclic metallacyclopentene intermediate 92, which subsequently undergoes insertion of CO to give 93. [Pg.17]

Cyanation reactions. New catalysts for converting carbonyl compounds to 0-tri-methylsilyl cyanohydrins by MesSiCN include Cp2FePFg and NbFs. Derivatization of ketones can use the titanium complex of or (Ph3PBn)Cl. ... [Pg.454]


See other pages where Titanium catalysts carbonyl compounds is mentioned: [Pg.152]    [Pg.192]    [Pg.306]    [Pg.517]    [Pg.564]    [Pg.281]    [Pg.390]    [Pg.111]    [Pg.111]    [Pg.43]    [Pg.148]    [Pg.113]    [Pg.144]    [Pg.3]    [Pg.12]    [Pg.605]    [Pg.1352]    [Pg.836]    [Pg.160]    [Pg.390]    [Pg.144]   
See also in sourсe #XX -- [ Pg.1122 ]

See also in sourсe #XX -- [ Pg.1122 ]

See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Carbonyl compounds catalysts

Carbonylation catalysts

Catalyst carbonyl

Catalysts compounds

Catalysts titanium

Furan, 2,5-bis reaction with carbonyl compounds titanium tetrachloride catalyst

Titanium carbonyls

Titanium compounds

© 2024 chempedia.info