Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonic human

Note This timeline is not intended to be a complete history of humans and carbon instead, it is a brief sampling of some major events in carbon/human history. ... [Pg.5]

Thermally carbonized Human epithelial colorectal adenocarcinoma cell lines Caco-2, HT-29 Hydrophobin Class II protein conjugated to porous sihcon particles. Cell viabihty maintained and still able to allow drug permeation from the porous silicon particle to the cells Bimbo et al. (2012)... [Pg.27]

Fig. 11.37 Free energy profile for the nucleophilic attack of water on CO2 (a) in aqueous solution and (b) in the enzyme carbonic anhydrase. (Graphs redrawn from Aqvist J, M Fothergill and A Warshel 1993. Computer Simulai of the COj/HCOf Interconversion Step in Human Carbonic Anhydrase I. Journal of the American Chemical Society 115 631-635.)... Fig. 11.37 Free energy profile for the nucleophilic attack of water on CO2 (a) in aqueous solution and (b) in the enzyme carbonic anhydrase. (Graphs redrawn from Aqvist J, M Fothergill and A Warshel 1993. Computer Simulai of the COj/HCOf Interconversion Step in Human Carbonic Anhydrase I. Journal of the American Chemical Society 115 631-635.)...
Aqvist J, M FothergiU and A Warshel 1993. Computer Simulation of the CO2/HCO3 Interconversi Step in Human Carbonic Anhydrase I. Journal of the American Chemical Society 115 631-635. [Pg.649]

Oxygen is the most abundant element on earth The earths crust is rich in carbonate and sili cate rocks the oceans are almost entirely water and oxygen constitutes almost one fifth of the air we breathe Carbon ranks only fourteenth among the elements in natural abundance but trails only hydro gen and oxygen in its abundance in the human body It IS the chemical properties of carbon that make it uniquely suitable as the raw material forthe building blocks of life Let s find out more about those chemi cal properties... [Pg.6]

Primary human skin irritation of tetradecanol, hexadecanol, and octadecanol is nil they have been used for many years ia cosmetic creams and ointments (24). Based on human testing and iudustrial experience, the linear, even carbon number alcohols of 6—18 carbon atoms are not human skin sensitizers, nor are the 7-, 9- and 11-carbon alcohols and 2-ethylhexanol. Neither has iudustrial handling of other branched alcohols led to skin problems. Inhalation hazard, further mitigated by the low vapor pressure of these alcohols, is slight. Sustained breathing of alcohol vapor or mist should be avoided, however, as aspiration hazards have been reported (25). [Pg.446]

Plants, in contrast to animals, have the ability to convert carbon dioxide from the atmosphere and inorganic components of the earth direcdy into high energy carbohydrates (qv), fats, and proteins (qv). These plant materials are absolutely essential to human nutrition as well as to the nutrition of other animal species. Thus consumption of plant matter, either directly or through a food chain, is essential to animal life and humans are totally dependent on agricultural endeavors, ie, the culture and harvesting of plant matter. [Pg.212]

Human activity, particularly in the developing world, continues to make it more difficult to sustain the world s biomass growth areas. It has been estimated that tropical forests are disappearing at a rate of tens of thousands of hm per year. Satellite imaging and field surveys show that Brazil alone has a deforestation rate of approximately 8 x 10 hm /yr (5). At a mean net carbon yield for tropical rain forests of 9.90 t/hm yr (4) (4.42 short ton /acreyr), this rate of deforestation corresponds to a loss of 79.2 x 10 t/yr of net biomass carbon productivity. [Pg.10]

Climate and Environmental Factors. The biomass species selected for energy appHcations and the climate must be compatible to faciUtate operation of fuel farms. The three primary climatic parameters that have the most influence on the productivity of an iadigenous or transplanted species are iasolation, rainfall, and temperature. Natural fluctuations ia these factors remove them from human control, but the information compiled over the years ia meteorological records and from agricultural practice suppHes a valuable data bank from which to develop biomass energy appHcations. Ambient carbon dioxide concentration and the availabiHty of nutrients are also important factors ia biomass production. [Pg.30]

The various fumigants often exhibit considerable specificity toward insect pests, as shown in Table 8. The proper choice for any control operation is determined not only by the effectiveness of the gas but by cost safety to humans, animals, and plants flammabdity penetratabdity effect on seed germination and reactivity with furnishings. The fumigants may be used individually or in combination. Carbon tetrachloride has been incorporated with carbon disulfide, ethylene dichloride, or ethylene dibromide to decrease flammability, and carbon dioxide is used with ethylene oxide for the same purpose. [Pg.298]

Zinc. The 2—3 g of zinc in the human body are widely distributed in every tissue and tissue duid (90—92). About 90 wt % is in muscle and bone unusually high concentrations are in the choroid of the eye and in the prostate gland (93). Almost all of the zinc in the blood is associated with carbonic anhydrase in the erythrocytes (94). Zinc is concentrated in nucleic acids (90), and found in the nuclear, mitochondrial, and supernatant fractions of all cells. [Pg.384]

Site characterization studies include a surface-based testing program, potential environmental impact, and societal aspects of the repository. Performance assessment considers both the engineered barriers and the geologic environment. Among features being studied are the normal water flow, some release of carbon-14, and abnormal events such as volcanic activity and human intmsion. The expected date for operation of the repository is 2013. [Pg.230]

Environmentally, carbon blacks are relatively stable and unreactive. There is no evidence that these materials are toxic to humans or animals. [Pg.15]

Potassium Carbonate. Except for small amounts produced by obsolete processes, eg, the leaching of wood ashes and the Engel-Precht process, potassium carbonate is produced by the carbonation, ie, via reaction with carbon dioxide, of potassium hydroxide. Potassium carbonate is available commercially as a concentrated solution containing ca 47 wt % K CO or in granular crystalline form containing 99.5 wt % K CO. Impurities are small amounts of sodium and chloride plus trace amounts (<2 ppm) of heavy metals such as lead. Heavy metals are a concern because potassium carbonate is used in the production of chocolate intended for human consumption. [Pg.532]

National Ambient Air Quality Standards. Under the Clean Air Act, six criterion pollutants, ie, pollutants of special concern, have been estabhshed by the EPA sulfur oxides (SO ), particulates, carbon monoxide (CO), nitrogen oxides (NO ), o2one (photochemical oxidants), and lead. National Ambient Air QuaUty Standards (NAAQS) were developed by EPA based on threshold levels of air pollution below which no adverse effects could be experienced on human health or the environment. [Pg.77]

Absorption of mannitol (209), sorbitol (210), and xyfltol (4) from the intestinal tract is relatively slow, compared to that of glucose. In humans, approximately 65% of orally adrninistered mannitol is absorbed in the dose range of 40—100 g. About one-third of the absorbed mannitol is excreted in the urine. The remainder is oxidized to carbon dioxide (211). [Pg.53]

Polyurethanes. These polymers can be considered safe for human use. However, exposure to dust, generated in finishing operations, should be avoided. Ventilation, dust masks, and eye protection are recommended in foam fabrication operations. Polyurethane or polyisocyanurate dust may present an explosion risk under certain conditions. Airborne concentrations of 25—30 g/m are required before an explosion occurs. Inhalation of thermal decomposition products of polyurethanes should be avoided because carbon monoxide and hydrogen cyanide are among the many products present. [Pg.353]


See other pages where Carbonic human is mentioned: [Pg.252]    [Pg.252]    [Pg.83]    [Pg.298]    [Pg.1515]    [Pg.20]    [Pg.712]    [Pg.44]    [Pg.206]    [Pg.207]    [Pg.217]    [Pg.324]    [Pg.445]    [Pg.469]    [Pg.551]    [Pg.463]    [Pg.30]    [Pg.427]    [Pg.295]    [Pg.373]    [Pg.73]    [Pg.79]    [Pg.473]    [Pg.481]    [Pg.486]    [Pg.258]    [Pg.102]    [Pg.148]    [Pg.153]    [Pg.350]    [Pg.185]    [Pg.262]    [Pg.327]    [Pg.21]    [Pg.53]   
See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Carbon cycle human influence

Carbon dioxide from human activities

Carbon dioxide human respiration

Carbon monoxide human

Carbon monoxide human monitoring

Health, human carbon monoxide

Human Carbonic Anhydrase Isozyme

Human Impact on Carbon Fluxes

Human body carbon monoxide toxicity

Human bone carbon Isotope composition

Human carbonic anhydrase

Human carbonic anhydrase B

Human carbonic anhydrase II

Human influence on the carbon cycle

Structure of a-Class Carbonic Anhydrase from Human Erythrocytes (the High Activity form HCA II)

© 2024 chempedia.info