Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fischer-Tropsch synthesis carbon monoxide

Catalysts not only accelerate a chemical reaction, but also help to channel a reaction to produce a desired product. This selectivity does not contradict the fact that the position of equilibrium itself cannot be influenced. It only means that under given circumstances, one of the many possible spontaneous parallel reactions will be considerably more accelerated than the others. For example, the process of hydrogenating carbon monoxide (Fischer-Tropsch synthesis) can produce methanol (catalysts ZnO, Cr203) or unsaturated hydrocarbons (catalyst Fe), depending upon the type of catalyst used and the reaction conditions. In contrast, we use the term specificity if a catalyst only affects certain substances. Very high selectivity and specificity can be found in reactions catalyzed by enzymes. These are very important reactions that will be gone into more detail in the next section. [Pg.460]

Kinetic Measurements of the Hydrt enation of Carbon Monoxide (Fischer-Tropsch Synthesis) Using an Internal Recycle Reactor... [Pg.26]

Fischer-Tropsch Waxes. Polymethylene wax [8002-74-2] production is based on the Fischer-Tropsch synthesis, which is basicaHy the polymerisation of carbon monoxide under high pressure and over special catalysts to produce hydrocarbons (see Fuels, synthetic-liquid fuels). [Pg.317]

The first demonstration of catalytic conversion of synthesis gas to hydrocarbons was accompHshed ia 1902 usiag a nickel catalyst (42). The fundamental research and process development on the catalytic reduction of carbon monoxide was carried out by Fischer, Tropsch, and Pichler (43). Whereas the chemistry of the Fischer-Tropsch synthesis is complex, generalized stoichiometric relationships are often used to represent the fundamental aspects ... [Pg.289]

Fischer-Tropsch Synthesis The best-known technology for producing hydrocarbons from synthesis gas is the Fischer-Tropsch synthesis. This technology was first demonstrated in Germany in 1902 by Sabatier and Senderens when they hydrogenated carbon monoxide (CO) to methane, using a nickel catalyst. In 1926 Fischer and Tropsch were awarded a patent for the discovery of a catalytic technique to convert synthesis gas to liquid hydrocarbons similar to petroleum. [Pg.2376]

Ruthenium is a known active catalyst for the hydrogenation of carbon monoxide to hydrocarbons (the Fischer-Tropsch synthesis). It was shown that on rathenized electrodes, methane can form in the electroreduction of carbon dioxide as weU. At temperatures of 45 to 80°C in acidihed solutions of Na2S04 (pH 3 to 4), faradaic yields for methane formation up to 40% were reported. On a molybdenium electrode in a similar solution, a yield of 50% for methanol formation was observed, but the yield dropped sharply during electrolysis, due to progressive poisoning of the electrode. [Pg.293]

Fischer-Tropsch synthesis can be regarded as a surface polymerization reaction since monomer units are produced from the reagents hydrogen and carbon monoxide in situ on the surface of the catalyst. Hence, a variety of hydrocarbons (mainly n-paraffines) are formed from hydrogen and carbon monoxide by successive addition of C, units to hydrocarbon chains on the catalyst surface (Equation 12.1). Additionally, carbon dioxide (Equation 12.3) and steam (Equations 12.1 and 12.2) are produced C02 affects the reaction just a little, whereas H20 shows a strong inhibiting effect on the reaction rate when iron catalysts are used. [Pg.216]

Sarup, B., and Wojciechowski, B.W. 1989. Studies of the Fischer-Tropsch synthesis on a cobalt catalyst. II. Kinetics of carbon monoxide conversion to methane and to higher hydrocarbons. Can. J. Chem. Eng. 67 62-74. [Pg.265]

The Fischer-Tropsch synthesis, which may be broadly defined as the reductive polymerization of carbon monoxide, can be schematically represented as shown in Eq. (1). The CHO products in Eq. (1) are any organic molecules containing carbon, hydrogen, and oxygen which are stable under the reaction conditions employed in the synthesis. With most heterogeneous catalysts the primary products of the reaction are straight-chain alkanes, while the secondary products include branched-chain hydrocarbons, alkenes, alcohols, aldehydes, and carboxylic acids. The distribution of the various products depends on both the type of catalyst and the reaction conditions employed (4). [Pg.62]

Subsequent studies have failed to support the carbide theory, and it is now generally accepted that carbides of the type proposed by Craxford play little or no part in the Fischer-Tropsch synthesis (86, 87). It has, however, recently been suggested, by analogy with the mechanism proposed for the Haber synthesis of ammonia, that carbides formed by dissociative absorption of carbon monoxide would be expected to be readily hydrogenated and could therefore be of importance in Fischer-Tropsch synthesis over heterogeneous catalyst (88). [Pg.86]

There has been considerable recent research interest in the activation of carbon monoxide en route to more complex organic molecules. Among the various reactions that have been investigated and/or newly discovered, the transition metal catalyzed reduction of CO to hydrocarbons (Fischer-Tropsch synthesis) has enjoyed particular attention (l- ). Whereas most of the successful efforts in this area have been directed toward the development of heterogeneous catalysts, there are relatively few homogeneous systems. Among these, two are based on clusters (10,11) and others are stoichiometric in metal (12-17). In this report we detail the synthesis and catalytic chemistry of polystyrene ( ) supported... [Pg.167]

Fischer-Tropsch synthesis could be "tailored by the use of iron, cobalt and ruthenium carbonyl complexes deposited on faujasite Y-type zeolite as starting materials for the preparation of catalysts. Short chain hydrocarbons, i.e. in the C-j-Cq range are obtained. It appears that the formation and the stabilization of small metallic aggregates into the zeolite supercage are the prerequisite to induce a chain length limitation in the hydrocondensation of carbon monoxide. However, the control of this selectivity through either a definite particle size of the metal or a shape selectivity of the zeolite is still a matter of speculation. Further work is needed to solve this dilemna. [Pg.201]

In this energy chain, coal is gasified to generate synthesis gas. The H2 CO ratio required for an optimum efficiency is adjusted via the CO shift reaction of a part of the carbon monoxide (CO) contained in the synthesis gas. The remaining synthesis gas is converted to liquid hydrocarbons via Fischer-Tropsch synthesis or via methanol synthesis with a downstream MtSynfuels (trademark by Lurgi) process (see beginning of Section 7.3.4). The liquid hydrocarbon yield amounts to about 0.40 MJ per MJ of hard coal, which is of the same order of magnitude as in the case of BTL ( 0.40 MJ/MJ) to calculate the thermal process efficiency, the electricity export must also be taken into account (see Table 7.12). [Pg.217]

Stage 3 shifts the source of hydrocarbon for transportation and chemicals to methane. Methane currently is reformed at elevated temperatures and pressures to synthesis gas. This mixture of hydrogen and carbon monoxide can then be converted via the well-known technologies of methanol synthesis and Fischer-Tropsch synthesis to eventually produce a variety of chemicals and fuels. In this stage, focus... [Pg.441]

A modification of the Fischer-Tropsch synthesis is the Kolbel-Engelhardt reaction, which converts carbon monoxide and water to hydrocarbons [Eq. (3.27)] by combining two processes 269... [Pg.108]

During a study of the origin of oxygenates in Fischer-Tropsch synthesis in the presence of a cobalt catalyst, Roelen observed the formation of propanal and 3-penta-none when ethylene was added to the feed.1 The process now termed hydroformylation or oxo reaction is the metal-catalyzed transformation of alkenes with carbon monoxide and hydrogen to form aldehydes ... [Pg.371]

When carbon monoxide is produced from hydrocarbons, the process amounts to the reverse of the Fischer-Tropsch synthesis. [Pg.723]

Reasons for interest in the catalyzed reactions of NO, CO, and COz are many and varied. Nitric oxide, for example, is an odd electron, hetero-nuclear diatomic which is the parent member of the environmentally hazardous oxides of nitrogen. Its decomposition and reduction reactions, which occur only in the presence of catalysts, provide a stimulus to research in nitrosyl chemistry. From a different perspective, the catalyzed reactions of CO and COz have attracted attention because of the need to develop hydrocarbon sources that are alternatives to petroleum. Carbon dioxide is one of the most abundant sources of carbon available, but its utilization will require a cheap and plentiful source of hydrogen for reduction, and the development of catalysts that will permit reduction to take place under mild conditions. The use of carbon monoxide in the development of alternative hydrocarbon sources is better defined at this time, being directly linked to coal utilization. The conversion of coal to substitute natural gas (SNG), hydrocarbons, and organic chemicals is based on the hydrogen reduction of CO via methanation and the Fischer-Tropsch synthesis. Notable successes using heterogeneous catalysts have been achieved in this area, but most mechanistic proposals remain unproven, and overall efficiencies can still be improved. [Pg.80]

In the production of paraffins, the mixture of carbon monoxide and hydrogen is enriched with hydrogen from the water-gas catalytic (Bosch) process, i.e., shift reaction (Fig. 1), and passed over a cobalt-thoria catalyst to form straight chain (linear) paraffins, olefins, and alcohols (Fischer-Tropsch synthesis) ... [Pg.508]

According to the International Union of Pure and Applied Chemistry (IUPAC O)) the turnover frequency of a catalytic reac tion is defined as the number of molecules reacting per active site in unit time. The term active sites is applied to those sites for adsorption which are effective sites for a particular heterogeneous catalytic reaction. Because it is often impossible to measure the amount of active sites, some indirect method is needed to express the rate data in terms of turnover frequencies In some cases a realistic measure of the number of active sites may be the number of molecules of some compound that can be adsorbed on the catalyst. This measure is frequently used in the literature of the Fischer-Tropsch synthesis, where the amount of adsorption sites is determined by carbon monoxide adsorption on the reduced catalyst. However, it is questionable whether the number of adsorption sites on the reduced catalyst is really an indication of the number of sites on the catalyst active during the synthesis, because the metallic phase of the Fischer-Tropsch catalysts is often carbided or oxidized during the process. [Pg.199]

Fischer-Tropsch synthesis production of organic molecules by the hydrogenation of carbon monoxide in the presence of a suitable catalyst. [Pg.352]


See other pages where Fischer-Tropsch synthesis carbon monoxide is mentioned: [Pg.160]    [Pg.506]    [Pg.16]    [Pg.42]    [Pg.337]    [Pg.62]    [Pg.88]    [Pg.98]    [Pg.276]    [Pg.200]    [Pg.518]    [Pg.519]    [Pg.5]    [Pg.326]    [Pg.122]    [Pg.156]    [Pg.103]    [Pg.108]    [Pg.300]    [Pg.403]    [Pg.637]    [Pg.275]    [Pg.340]    [Pg.421]    [Pg.204]    [Pg.355]    [Pg.364]    [Pg.443]   
See also in sourсe #XX -- [ Pg.178 , Pg.191 ]

See also in sourсe #XX -- [ Pg.296 ]




SEARCH



Carbon Fischer-Tropsch synthesis

Carbon monoxide, synthesis

Carbon synthesis

Carbonates synthesis

Fischer-Tropsch synthesi

Fischer-Tropsch synthesis

Fischer-Tropsch synthesis carbon monoxide effects

Fischer-Tropsch synthesis carbon monoxide-hydrogen distribution

© 2024 chempedia.info