Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon Fischer-Tropsch synthesis

Fischer-Tropsch Waxes. Polymethylene wax [8002-74-2] production is based on the Fischer-Tropsch synthesis, which is basicaHy the polymerisation of carbon monoxide under high pressure and over special catalysts to produce hydrocarbons (see Fuels, synthetic-liquid fuels). [Pg.317]

The first demonstration of catalytic conversion of synthesis gas to hydrocarbons was accompHshed ia 1902 usiag a nickel catalyst (42). The fundamental research and process development on the catalytic reduction of carbon monoxide was carried out by Fischer, Tropsch, and Pichler (43). Whereas the chemistry of the Fischer-Tropsch synthesis is complex, generalized stoichiometric relationships are often used to represent the fundamental aspects ... [Pg.289]

Fischer-Tropsch Synthesis The best-known technology for producing hydrocarbons from synthesis gas is the Fischer-Tropsch synthesis. This technology was first demonstrated in Germany in 1902 by Sabatier and Senderens when they hydrogenated carbon monoxide (CO) to methane, using a nickel catalyst. In 1926 Fischer and Tropsch were awarded a patent for the discovery of a catalytic technique to convert synthesis gas to liquid hydrocarbons similar to petroleum. [Pg.2376]

Hot (230-240°F) potassium carbonate treating was patented in Germany in 1904 and perfected into modem commercial requirements by the U.S. Bureau of Mines. The U.S. Bureau of Mines was working on Fischer-Tropsch synthesis gas at the time. Potassium carbonate treating requires high partial pressures of CO2. It therefore cannot successfully treat gas containing only H2S. ... [Pg.192]

Ruthenium is a known active catalyst for the hydrogenation of carbon monoxide to hydrocarbons (the Fischer-Tropsch synthesis). It was shown that on rathenized electrodes, methane can form in the electroreduction of carbon dioxide as weU. At temperatures of 45 to 80°C in acidihed solutions of Na2S04 (pH 3 to 4), faradaic yields for methane formation up to 40% were reported. On a molybdenium electrode in a similar solution, a yield of 50% for methanol formation was observed, but the yield dropped sharply during electrolysis, due to progressive poisoning of the electrode. [Pg.293]

The potential of carbon nanomaterials for the Fischer-Tropsch synthesis was investigated by employing three different nanomaterials as catalyst supports. Herringbone (HB) and platelet (PL) type nanofibers as well as multiwalled (MW) nanotubes were examined in terms of stability, activity, and selectivity for Fischer-Tropsch synthesis (FTS). [Pg.17]

Concerning the Fischer-Tropsch synthesis, carbon nanomaterials have already been successfully employed as catalyst support media on a laboratory scale. The main attention in literature has been paid so far to subjects such as the comparison of functionalization techniques,9-11 the influence of promoters on the catalytic performance,1 12 and the investigations of metal particle size effects7,8 as well as of metal-support interactions.14,15 However, research was focused on one nanomaterial type only in each of these studies. Yu et al.16 compared the performance of two different kinds of nanofibers (herringbones and platelets) in the Fischer-Tropsch synthesis. A direct comparison between nanotubes and nanofibers as catalyst support media has not yet been an issue of discussion in Fischer-Tropsch investigations. In addition, a comparison with commercially used FT catalysts has up to now not been published. [Pg.18]

Bahome, M., Jewell, L., Hildebrandt, D., Glasser, D., and Coville, N. J. 2005. Fischer-Tropsch synthesis over iron catalysts supported on carbon nano tubes. Applied Catalysis A General 287 60-67. [Pg.28]

Bezemer, G. L., Radstake, P. B., Falke, U., Oosterbeek, H., Kuipers, H. P. C. E., van Dillen, A., and de Jong, K. P. 2006. Investigation of promoter effects of manganese oxide on carbon nanofiber-supported cobalt catalysts for Fischer-Tropsch synthesis. Journal of Catalysis 237 152-61. [Pg.29]

Tavasoli, A., Abbaslou, R. M. M., Trepanier, M., and Dalai, A. K. 2008. Fischer-Tropsch synthesis over cobalt catalyst supported on carbon nanotubes in a slurry reactor. Applied Catalysis A General 345 134-42. [Pg.29]

Yu, Z., Borg, 0., Chen, D., Enger, B. C., Frpseth, V., Rytter, E., Wigum, H., and Holmen, A. 2006. Carbon nanofiber supported cobalt catalysts for Fischer-Tropsch synthesis with high activity and selectivity. Catalysis Letters 109 43 -7. [Pg.29]

Moodley, D. J., van de Loosdrecht, J., Saib, A. M., Overett, M. J., Datye, A. K., and Niemantsverdriet, J. W. 2009. Carbon deposition as a deactivation mechanism of cobalt-based Fischer-Tropsch synthesis catalysts under reahstic conditions. Appl. Catal. A, 354 102-10. [Pg.79]

Bertole, C. J., Kiss, G., and Mims, C. A. 2004. The effect of surface-active carbon on hydrocarbon selectivity in the cobalt-catalyzed Fischer-Tropsch synthesis. J. Catal. 223 309-18. [Pg.81]

In Fischer-Tropsch synthesis the readsorption and incorporation of 1-alkenes, alcohols, and aldehydes and their subsequent chain growth play an important role on product distribution. Therefore, it is very useful to study these reactions in the presence of co-fed 13C- or 14 C-labeled compounds in an effort to obtain data helpful to elucidate the reaction mechanism. It has been shown that co-feeding of CF12N2, which dissociates toward CF12 and N2 on the catalyst surface, has led to the sound interpretation that the bimodal carbon number distribution is caused by superposition of two incompatible mechanisms. The distribution characterized by the lower growth probability is assigned to the CH2 insertion mechanism. [Pg.213]

Fischer-Tropsch synthesis can be regarded as a surface polymerization reaction since monomer units are produced from the reagents hydrogen and carbon monoxide in situ on the surface of the catalyst. Hence, a variety of hydrocarbons (mainly n-paraffines) are formed from hydrogen and carbon monoxide by successive addition of C, units to hydrocarbon chains on the catalyst surface (Equation 12.1). Additionally, carbon dioxide (Equation 12.3) and steam (Equations 12.1 and 12.2) are produced C02 affects the reaction just a little, whereas H20 shows a strong inhibiting effect on the reaction rate when iron catalysts are used. [Pg.216]

Sarup, B., and Wojciechowski, B.W. 1989. Studies of the Fischer-Tropsch synthesis on a cobalt catalyst. II. Kinetics of carbon monoxide conversion to methane and to higher hydrocarbons. Can. J. Chem. Eng. 67 62-74. [Pg.265]

The primary product from Fischer-Tropsch synthesis is a complex multiphase mixture of hydrocarbons, oxygenates, and water. The composition of this mixture is dependent on the Fischer-Tropsch technology and considerable variation in carbon number distribution, as well as the relative abundance of different compound classes is possible. The primary Fischer-Tropsch product has to be refined to produce final products, and in this respect, it is comparable to crude oil. The primary product from Fischer-Tropsch synthesis can therefore be seen as a synthetic crude oil (syncrude). There are nevertheless significant differences between crude oil and Fischer-Tropsch syncrude, thus requiring a different refining approach.1... [Pg.332]

The Fischer-Tropsch synthesis, which may be broadly defined as the reductive polymerization of carbon monoxide, can be schematically represented as shown in Eq. (1). The CHO products in Eq. (1) are any organic molecules containing carbon, hydrogen, and oxygen which are stable under the reaction conditions employed in the synthesis. With most heterogeneous catalysts the primary products of the reaction are straight-chain alkanes, while the secondary products include branched-chain hydrocarbons, alkenes, alcohols, aldehydes, and carboxylic acids. The distribution of the various products depends on both the type of catalyst and the reaction conditions employed (4). [Pg.62]

Subsequent studies have failed to support the carbide theory, and it is now generally accepted that carbides of the type proposed by Craxford play little or no part in the Fischer-Tropsch synthesis (86, 87). It has, however, recently been suggested, by analogy with the mechanism proposed for the Haber synthesis of ammonia, that carbides formed by dissociative absorption of carbon monoxide would be expected to be readily hydrogenated and could therefore be of importance in Fischer-Tropsch synthesis over heterogeneous catalyst (88). [Pg.86]

If the primary carbene proposed as an intermediate in the Fischer-Tropsch synthesis may be viewed as nucleophilic, then an alternative mode of reaction could be attack at the carbonyl carbon of an adjacent carbonyl group to give a C2 unit of type 36 ... [Pg.93]

There has been considerable recent research interest in the activation of carbon monoxide en route to more complex organic molecules. Among the various reactions that have been investigated and/or newly discovered, the transition metal catalyzed reduction of CO to hydrocarbons (Fischer-Tropsch synthesis) has enjoyed particular attention (l- ). Whereas most of the successful efforts in this area have been directed toward the development of heterogeneous catalysts, there are relatively few homogeneous systems. Among these, two are based on clusters (10,11) and others are stoichiometric in metal (12-17). In this report we detail the synthesis and catalytic chemistry of polystyrene ( ) supported... [Pg.167]

Fischer-Tropsch synthesis could be "tailored by the use of iron, cobalt and ruthenium carbonyl complexes deposited on faujasite Y-type zeolite as starting materials for the preparation of catalysts. Short chain hydrocarbons, i.e. in the C-j-Cq range are obtained. It appears that the formation and the stabilization of small metallic aggregates into the zeolite supercage are the prerequisite to induce a chain length limitation in the hydrocondensation of carbon monoxide. However, the control of this selectivity through either a definite particle size of the metal or a shape selectivity of the zeolite is still a matter of speculation. Further work is needed to solve this dilemna. [Pg.201]

As catalysis proceeds at the surface, a catalyst should preferably consist of small particles with a high fraction of surface atoms. This is often achieved by dispersing particles on porous supports such as silica, alumina, titania or carbon (see Fig. 1.2). Unsupported catalysts are also in use. The iron catalysts for ammonia synthesis and CO hydrogenation (the Fischer-Tropsch synthesis) or the mixed metal oxide catalysts for production of acrylonitrile from propylene and ammonia form examples. [Pg.17]


See other pages where Carbon Fischer-Tropsch synthesis is mentioned: [Pg.195]    [Pg.160]    [Pg.506]    [Pg.16]    [Pg.42]    [Pg.80]    [Pg.337]    [Pg.613]    [Pg.195]    [Pg.14]    [Pg.26]    [Pg.19]    [Pg.72]    [Pg.171]    [Pg.200]    [Pg.200]    [Pg.62]    [Pg.88]    [Pg.89]    [Pg.98]    [Pg.276]    [Pg.327]   
See also in sourсe #XX -- [ Pg.808 ]




SEARCH



Carbon monoxide Fischer-Tropsch synthesis

Carbon synthesis

Carbonates synthesis

Cobalt-based Fischer-Tropsch synthesis carbon

Fischer-Tropsch synthesi

Fischer-Tropsch synthesis

Fischer-Tropsch synthesis carbon monoxide effects

Fischer-Tropsch synthesis carbon monoxide-hydrogen distribution

Fischer-Tropsch synthesis surface carbon

© 2024 chempedia.info