Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium complexes carbonylation

In 2000, these authors also developed a very efficient diphosphine-bithiophene ligand, tetraMe-BITIOP, which is depicted in Scheme 8.29. The ruthenium complex of this electron-rich diphosphine was used as the catalyst in asymmetric hydrogenation reactions of prostereogenic carbonyl functions of a-... [Pg.263]

Carbonylation of alkynes is a convenient method to synthesize various carbonyl compounds. Alper et al. found that carbonylation of terminal alkynes could be carried out in aqueous media in the presence of 1 atm CO by a cobalt catalyst, affording 2-butenolide products. This reaction can also be catalyzed by a cobalt complex and a ruthenium complex to give y-keto acids (Scheme 4.8).92... [Pg.126]

Nagashima reported the hydrogenation of di-, tri- and tetranuclear ruthenium complexes bearing azulenes below 100 °C revealed that only the triruthenium compounds reacted with H2 via triruthenium dihydride intermediates.398 This indicates that there exists a reaction pathway to achieve facile activation of dihydrogen on the face of a triruthenium carbonyl moiety.399... [Pg.129]

Various ruthenium complexes catalyze the isomerization of allylic alcohols to saturated carbonyl compounds. Ru(acac)3 is an effective catalyst for the isomerization of a wide range of allylic alcohols (Scheme 12).35... [Pg.78]

Allyl methylcarbonate reacts with norbornene following a ruthenium-catalyzed carbonylative cyclization under carbon monoxide pressure to give cyclopentenone derivatives 12 (Scheme 4).32 Catalyst loading, amine and CO pressure have been optimized to give the cyclopentenone compound in 80% yield and a total control of the stereoselectivity (exo 100%). Aromatic or bidentate amines inhibit the reaction certainly by a too strong interaction with ruthenium. A plausible mechanism is proposed. Stereoselective CM-carboruthenation of norbornene with allyl-ruthenium complex 13 followed by carbon monoxide insertion generates an acylruthenium intermediate 15. Intramolecular carboruthenation and /3-hydride elimination of 16 afford the -olefin 17. Isomerization of the double bond under experimental conditions allows formation of the cyclopentenone derivative 12. [Pg.301]

Although the molybdenum and ruthenium complexes 1-3 have gained widespread popularity as initiators of RCM, the cydopentadienyl titanium derivative 93 (Tebbe reagent) [28,29] can also be used to promote olefin metathesis processes (Scheme 13) [28]. In a stoichiometric sense, 93 can be also used to promote the conversion of carbonyls into olefins [28b, 29]. Both transformations are thought to proceed via the reactive titanocene methylidene 94, which is released from the Tebbe reagent 93 on treatment with base. Subsequent reaction of 94 with olefins produces metallacyclobutanes 95 and 97. Isolation of these adducts, and extensive kinetic and labeling studies, have aided in the eluddation of the mechanism of metathesis processes [28]. [Pg.102]

Mononuclear ruthenium complexes were found to be superior to carbonyl clusters during a comprehensive comparison of a variety of catalysts in the reduction of acetone [49]. Without solvent, most catalysts were highly selective, although the activity was quite low. The addition of water to the system vastly increased yields, in agreement with Schrock and Osborrfs observations into rhodium-catalyzed hydrogenations (Table 15.9) [41],... [Pg.431]

The control of enantioselectivity in the reduction of carbonyl compounds provides an opportunity for obtaining the product alcohols in an enantiomerically enriched form. For transfer hydrogenation, such reactions have been dominated by the use of enantiomerically pure ruthenium complexes [33, 34], although Pfaltz and coworkers had shown by 1991 that high levels of enantioselectivity could be obtained using iridium(I) bis-oxazoline complexes [35]. [Pg.85]

Lee s group has also reported ruthenium-catalyzed carbonylative cyclization of 1,6-diynes. The noteworthy aspect of this cyclization is the unprecedented anti nucleophile attack on a 7i-alkyne complex bearing a ruthenium vinylidene functionality. A catalytic system based on [Ru(p-cymene)Cl2]2/P(4-F-C6H4)3/DMAP was active for the cyclization of 1,6-diyne 103 and benzoic acid in dioxane at 65 °Cto afford cydohexenylidene enol ester 104a in 74% yield after 24h [34]. Additional examples are shown in Scheme 6.35. [Pg.213]

Ruthenium, cobalt and halogen are the key elements of this catalysis (2), although ruthenium in combination with halogen-containing zirconium and titanium derivatives is also effective (3). In the case of the Ru-Oo couple, the highest yields of acetic acid may generally be achieved with ruthenium oxide, carbonyls and complex derivatives in combination with various cobalt halides dispersed in low-melting quaternary phosphonium halide salts (2). [Pg.98]


See other pages where Ruthenium complexes carbonylation is mentioned: [Pg.178]    [Pg.111]    [Pg.98]    [Pg.45]    [Pg.651]    [Pg.121]    [Pg.113]    [Pg.128]    [Pg.7]    [Pg.26]    [Pg.41]    [Pg.218]    [Pg.65]    [Pg.69]    [Pg.425]    [Pg.1216]    [Pg.383]    [Pg.121]    [Pg.268]    [Pg.276]    [Pg.292]    [Pg.350]    [Pg.898]    [Pg.317]    [Pg.229]    [Pg.204]    [Pg.201]    [Pg.797]    [Pg.218]    [Pg.1189]    [Pg.194]    [Pg.118]    [Pg.402]   
See also in sourсe #XX -- [ Pg.130 ]

See also in sourсe #XX -- [ Pg.267 ]

See also in sourсe #XX -- [ Pg.267 ]

See also in sourсe #XX -- [ Pg.6 , Pg.267 ]




SEARCH



Ruthenium carbonyl

Ruthenium carbonyl complexes

Ruthenium carbonylations

© 2024 chempedia.info