Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide, air pollution

Chen, Q., Wang, L. (2000). Carbon monoxide air pollution and its health impact on the major cities of China. In Carbon Monoxide Toxicity (D.G. Penny, ed.), pp. 345-61. CRC Press, Washington, DC. [Pg.286]

Ziaei, S., Nouri, K., Kazenmejad, A. (2005). Effects of carbon monoxide air pollution in pregnancy on neonatal nucleated red blood cells. Paediatr. Perinat. Epidemiol. 19 27-30. [Pg.292]

W 58. Read the What If... Problem Molecules box in this chapter. The Environmental Protection Agency (EPA) monitors problem molecules and pubUshes the results on their website http //www.epa.gov/air/data/ index.html. Go to that website and view the reports and maps section. Use the menus to request a map of the U.S. nonattainment areas for carbon monoxide (CO) and print the map. This map shows regions where carbon monoxide air pollution levels persistently exceed national air quahty standards. Do you live in a region where the levels are exceeded Try this for other pollutants such as ozone (O3). [Pg.129]

The presence of the catalyst provides a lower-energy chemical path than that offered by a thermal reaction. A catalyst accelerates oxidation of hydrocarbon/carbon monoxide/air mixtures that lie outside the flammability range required for thermal reactions. In the exhaust of the automobile the composition of the pollutants is far below the flammability range yet the oxidation reactions occur by the catalyst providing a lower-energy chemical path to that offered by the thermal reaction. An excellent example is the oxidation of CO with and without a catalyst. Without a catalyst the rate-limiting step is 02 dissociation at 700°C followed by reaction with gas phase CO. In the presence of the Pt catalyst 02 dissociation is rapid and the rate-limiting step becomes the surface reaction between adsorbed O atoms and CO that occurs below 100°C. [Pg.291]

EPA s concern with the effects of the increased CO emissions on the environment stemmed from carhon monoxide air pollution s long-term harmful effects on human well-being. As then-Attorney General Janet Reno observed, Carbon monoxide can cause cardiopulmonary problems and can lead to headaches, impaired vision, and a reduced ability to work and learn. ... [Pg.40]

Natural gas is attractive as a fuel ia many appHcatioas because of its relatively clean burning characteristics and low air pollution (qv) potential compared to other fossil fuels. Combustion of natural gas iavolves mixing with air or oxygen and igniting the mixture. The overall combustion process does not iavolve particulate combustion or the vaporization of Hquid droplets. With proper burner design and operation, the combustion of natural gas is essentially complete. No unbumed hydrocarbon or carbon monoxide is present ia the products of combustioa. [Pg.174]

National Ambient Air Quality Standards. Under the Clean Air Act, six criterion pollutants, ie, pollutants of special concern, have been estabhshed by the EPA sulfur oxides (SO ), particulates, carbon monoxide (CO), nitrogen oxides (NO ), o2one (photochemical oxidants), and lead. National Ambient Air QuaUty Standards (NAAQS) were developed by EPA based on threshold levels of air pollution below which no adverse effects could be experienced on human health or the environment. [Pg.77]

Air pollution (qv) problems are characteri2ed by their scale and the types of pollutants involved. Pollutants are classified as being either primary, that is emitted direcdy, or secondary, ie, formed in the atmosphere through chemical or physical processes. Examples of primary pollutants are carbon monoxide [630-08-0] (qv), CO, lead [7439-92-1] (qv), Pb, chlorofluorocarbons, and many toxic compounds. Notable secondary pollutants include o2one [10028-15-6] (qv), O, which is formed in the troposphere by reactions of nitrogen oxides (NO ) and reactive organic gases (ROG), and sulfuric and nitric acids. [Pg.377]

Carbon monoxide was discovered in 1776 by heating a mixture of charcoal and 2inc oxide. It provided a source of heat to industry and homes as a component of town gas and was used as a primary raw material in German synthetic fuel manufacture during World War II its compounds with transition metals have been studied extensively (see Carbonyls). Most recently, carbon monoxide emission from vehicle exhausts has been recognized as a primary source of air pollution (qv). [Pg.48]

ERA promulgated the basic set of current ambient air-quality standards in April 1971. The specific regulated pollutants were particulates, sulfur dioxide, photochemical oxidants, hydrocarbons, carbon monoxide, and nitrogen oxides. In 1978, lead was added. Table 25-1 enumerates the present standards. [Pg.2155]

Human-made sources cover a wide spectrum of chemical and physical activities and are the major contributors to urban air pollution. Air pollutants in the United States pour out from over 10 million vehicles, the refuse of over 250 million people, the generation of billions of kilowatts of electricity, and the production of innumerable products demanded by eveiyday living. Hundreds of millions of tons of air pollutants are generated annu ly in the United States alone. The five main classes of pollutants are particulates, sulfur dioxide, nitrogen oxides, volatile organic compounds, and carbon monoxide. Total emissions in the United States are summarized by source categoiy for the year 1993 in Table 25-10. [Pg.2172]

Air-poUutant effects on neural and sensory functions in humans vary widely. Odorous pollutants cause only minor annoyance yet, if persistent, they can lead to irritation, emotional upset, anorexia, and mental depression. Carbon monoxide can cause death secondary to the depression of the respiratory centers of the central nervous system. Short of death, repeated and prolonged exposure to carbon monoxide can alter sensory protection, temporal perception, and higher mental functions. Lipid-soluble aerosols can enter the body and be absorbed in the lipids of the central nervous system. Once there, their effects may persist long after the initial contact has been removed. Examples of agents of long-term chronic effects are organic phosphate pesticides and aerosols carrying the metals lead, mercury, and cadmium. [Pg.2179]

Pollutant Formation and Control in Flames Key combustion-generated air pollutants include nitrogen oxides (NOJ, sulfur oxides (principally SO9), particulate matter, carbon monoxide, and unburned hydrocarbons. [Pg.2380]

The problems with the combustion reaction occur because the process also produces many other products, most of which are termed air pollutants. These can be carbon monoxide, carbon dioxide, oxides of sulfur, oxides of nitrogen, smoke, fly ash, metals, metal oxides, metal salts, aldehydes, ketones, acids, polynuclear hydrocarbons, and many others. Only in the past few decades have combustion engineers become concerned about... [Pg.78]

The effect of accumulation in various systems depends greatly on the quantity of pollutants involved. Many pollutants can be detected at concentrations lower than those necessary to affect human health. For pollutants which are eliminated slowly, individuals can be monitored over long periods of time to detect trends in body burden the results of these analyses can then be related to total pollutant exposure. Following are two examples of air pollutants that contribute to the total body burden for lead and carbon monoxide. [Pg.101]

The second example of an air pollutant that affects the total body burden is carbon monoxide (CO). In addihon to CO in ambient air, there are other sources for inhalation. People who smoke have an elevated CO body burden compared to nonsmokers. Individuals indoors may be exposed to elevated levels of CO from incomplete combustion in heating or cooking stoves. CO gas enters the human body by inhalation and is absorbed directly into the bloodstream the total body burden resides in the circulatory system. The human body also produces CO by breakdown of hemoglobin. Hemoglobin breakdown gives every individual a baseline level of CO in the circulatory system. As the result of these factors, the body burden can fluctuate over a time scale of hours. [Pg.102]

The U.S. Environmental Protection Agency has established National Ambient Air Quality Standards (NAAQS) for protection of human health and welfare. These standards are defined in terms of concentration and hme span for a specific pollutant for example, the NAAQS for carbon monoxide is 9 ppmV for 8 hr, not to be exceeded more than once per year. For a state or local government to establish compliance with a National Ambient Air Quality Standard, measurements of the actual air quality must be made. To obtain these measurements, state and local governments have established stationary monitoring networks with instrumentation complying with federal specifications, as discussed in Chapter 14. The results of these measurements determine whether a given location is violating the air quality standard. [Pg.216]

For any pollutant, air quality criteria may refer to different types of effects. For example. Tables 22-1 through 22-6 list effects on humans, animals, vegetation, materials, and the atmosphere caused by various exposures to sulfur dioxide, particulate matter, nitrogen dioxide, carbon monoxide, ozone, and lead. These data are from fhe Air Quality Criteria for these pollutants published by the U.S. Environmental Protection Agency. [Pg.367]

The Clean Air Act of 1990 establishes tighter pollution standards for emissions from automobiles and trucks. These standards will reduce tailpipe emissions of hydrocarbons, carbon monoxide, and nitrogen oxides on a phased-in basis beginning in model year 1994. Automobile manufacturers will also be required to reduce vehicle emissions resulting from the evaporation of gasoline during refueling. [Pg.399]

Within 6 months after enactment of the Qean Air Act Amendments of 1990, and at least every 3 years thereafter, the Administrator shall review and, if necessary, revise, the methods ( emission factors ) used for purposes of this Act to estimate the quantity of emissions of carbon monoxide, volatile organic compounds, and oxides of nitrogen from sources of such air pollutants (including area sources and mobile sources). In addition, the Administrator shall permit any person to demonstrate improved emissions estimating techniques, and following approval of such techniques, the Administrator shall authorise the use of such techniques. Any such technique may be approved only after appropriate public participation. Until the Administrator has completed the revision required by this section, nothing in this section shall be construed to affect the validity of emission factors established by the Administrator before the date of the enactment of the Clean Air Act Amendments of 1990. [Pg.405]

The atmosphere of the world cannot continue to accept greater and greater amounts of emissions from mobile sources as our transportation systems expand. The present emissions from all transportation sources in the United States exceed 50 biUion kg of carbon monoxide per year, 20 billion kg per year of unbumed hydrocarbons, and 20 billion kg of oxides of nitrogen. If presently used power sources cannot be modified to bring their emissions to acceptable levels, we must develop alternative power sources or alternative transportation systems. All alternatives should be considered simultaneously to achieve the desired result, an acceptable transportation system with a minimum of air pollution. [Pg.527]

Combustion processes are the most important source of air pollutants. Normal products of complete combustion of fossil fuel, e.g. coal, oil or natural gas, are carbon dioxide, water vapour and nitrogen. However, traces of sulphur and incomplete combustion result in emissions of carbon monoxide, sulphur oxides, oxides of nitrogen, unburned hydrocarbons and particulates. These are primary pollutants . Some may take part in reactions in the atmosphere producing secondary pollutants , e.g. photochemical smogs and acid mists. Escaping gas, or vapour, may... [Pg.502]

Although the original Clean Air Act of 1977 brought about significant improvements in air quality, the urban air pollution problems of ozone (known as smog), carbon monoxide (CO), and particulate matter (PM,o) persist. Currently, over 100 million Americans live in cities which are out of attaimnent with the public health standards for ozone. The most widespread and persistent urban... [Pg.2]

Raw material input to petroleum refineries is primarily crude oil however, petroleum refineries use and generate an enormous number of chemicals, many of which leave the facilities as discharges of air emissions, wastewater, or solid waste. Pollutants generated typically include VOCs, carbon monoxide (CO), sulfur oxides (SOJ, nitrogen oxides (NOJ, particulates, ammonia (NH3), hydrogen sulfide (HjS) metals, spent acids, and numerous toxic organic compounds. [Pg.101]


See other pages where Carbon monoxide, air pollution is mentioned: [Pg.370]    [Pg.453]    [Pg.45]    [Pg.172]    [Pg.262]    [Pg.377]    [Pg.480]    [Pg.480]    [Pg.500]    [Pg.500]    [Pg.35]    [Pg.36]    [Pg.79]    [Pg.86]    [Pg.279]    [Pg.524]    [Pg.3]    [Pg.3]    [Pg.4]    [Pg.4]    [Pg.89]   
See also in sourсe #XX -- [ Pg.1328 ]




SEARCH



Air pollutants carbon monoxid

Air pollutants carbon monoxid

Air pollutants carbon monoxide

Air pollutants carbon monoxide

Pollution carbon monoxide

© 2024 chempedia.info