Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Industrial application carbon

Keywords Adsorption theories isotherm data adsorbents zeolites activated carbons industrial applications. [Pg.977]

Rare-earth compounds containing lanthanum are extensively used in carbon lighting applications, especially by the motion picture industry for studio lighting and projection. This application consumes about 25 percent of the rare-earth compounds produced. La203 improves the alkali resistance of glass, and is used in making special optical glasses. Small amounts of lanthanum, as an additive, can be used to produce nodular cast iron. [Pg.129]

Acetylene was discovered m 1836 by Edmund Davy and characterized by the French chemist P E M Berthelot m 1862 It did not command much attention until its large scale preparation from calcium carbide m the last decade of the nineteenth century stim ulated interest m industrial applications In the first stage of that synthesis limestone and coke a material rich m elemental carbon obtained from coal are heated m an electric furnace to form calcium carbide... [Pg.363]

Thus far the importance of carbon cluster chemistry has been in the discovery of new knowl edge Many scientists feel that the earliest industrial applications of the fullerenes will be based on their novel electrical properties Buckminsterfullerene is an insulator but has a high electron affinity and is a superconductor in its reduced form Nanotubes have aroused a great deal of interest for their electrical properties and as potential sources of carbon fibers of great strength... [Pg.437]

Other Industrial Applications. High pressures are used industrially for many other specialized appHcations. Apart from mechanical uses in which hydrauhc pressure is used to supply power or to generate Hquid jets for mining minerals or cutting metal sheets and fabrics, most of these other operations are batch processes. Eor example, metallurgical appHcations include isostatic compaction, hot isostatic compaction (HIP), and the hydrostatic extmsion of metals. Other appHcations such as the hydrothermal synthesis of quartz (see Silica, synthetic quartz crystals), or the synthesis of industrial diamonds involve changing the phase of a substance under pressure. In the case of the synthesis of diamonds, conditions of 6 GPa (870,000 psi) and 1500°C are used (see Carbon, diamond, synthetic). [Pg.76]

Evaporators have performed successfully in a number of industrial applications. Typical materials that are processed in evaporators include Caustic Soda, Caustic Potash, Sodium Carbonate, Sodium Dichromate, Sodium Nitrate, Ammonium Nitrate, Phosphoric Acid Superacid, Potash, Urea, Glue, Glycerine,... [Pg.95]

The following are some of the typical industrial applications for liquid-phase carbon adsorption. Generally liquid-phase carbon adsorbents are used to decolorize or purify liquids, solutions, and liquefiable materials such as waxes. Specific industrial applications include the decolorization of sugar syrups the removal of sulfurous, phenolic, and hydrocarbon contaminants from wastewater the purification of various aqueous solutions of acids, alkalies, amines, glycols, salts, gelatin, vinegar, fruit juices, pectin, glycerol, and alcoholic spirits dechlorination the removal of... [Pg.279]

The study of the mechanical properties of filled elastomer systems is a chaUenging and exciting topic for both fundamental science and industrial application. It is known that the addition of hard particulates to a soft elastomer matrix results in properties that do not follow a straightforward mle of mixtures. Research efforts in this area have shown that the properties of filled elastomers are influenced by the nature of both the filler and the matrix, as well as the interactions between them. Several articles have reviewed the influence of fiUers hke sihca and carbon black on the reinforcement of elastomers.In general, the strucmre-property relationships developed for filled elastomers have evolved into the foUowing major areas FiUer structure, hydrodynamic reinforcement, and interactions between fiUers and elastomers. [Pg.503]

Before dealing with reinforcement of elastomers we have to introduce the basic molecular features of mbber elasticity. Then, we introduce—step-by-step—additional components into the model which consider the influence of reinforcing disordered solid fillers like carbon black or silica within a rabbery matrix. At this point, we will pay special attention to the incorporation of several additional kinds of complex interactions which then come into play polymer-filler and filler-filler interactions. We demonstrate how a model of reinforced elastomers in its present state allows a thorough description of the large-strain materials behavior of reinforced mbbers in several fields of technical applications. In this way we present a thoroughgoing line from molecular mechanisms to industrial applications of reinforced elastomers. [Pg.607]

The strong Bronstedt acid nature of some hexacoordinated phosphorus derivatives, [7",H ] (Et20)4 in particular, was recently used within the context of an industrial application [36]. The conjugated acid of tris(oxalato)phosphate anion 7 was found to effectively catalyze the ring-forming reaction of trimethyl-hydroquinone 63 with isophytol 64 to give (all rac)-a-tocopherol 65 (ethylene-carbonate/heptane 1 1,100 °C, 90%, Scheme 19). This process is particularly... [Pg.28]

C14-0119. Both CCI4 (carbon tetrachloride) and CS2 (carbon disulfide) are liquids used as solvents in special industrial applications, (a) Using data Irom Appendix D, calculate A 77 ° and A G ° for combustion... [Pg.1041]

The process making use of adsorption on carbon involves first contacting a pregnant leach liquor with the adsorbent (activated carbon) and then stripping the species adsorbed on it. Activated carbon is a widely recognized as a metallurgical reagent that has found a number of industrial applications. [Pg.507]

The adsorption process, in principle, is an anion-exchange process which is restricted only to the surface of the activated charcoal. This fact makes the loading or the exchange capacity of activated charcoal to be relatively smaller in comparison with ion-exchange resins, and it is for this reason that charcoals are quite often treated suitably to improve their loading capacities. The surface and the pore structure characteristics of activated carbon are the important factors upon which its industrial applications depend. [Pg.507]

In an industrial application dissolution/reprecipitation technology is used to separate and recover nylon from carpet waste [636]. Carpets are generally composed of three primary polymer components, namely polypropylene (backing), SBR latex (binding) and nylon (face fibres), and calcium carbonate filler. The process involves selective dissolution of nylon (typically constituting more than 50wt% of carpet polymer mass) with an 88 wt % liquid formic acid solution and recovery of nylon powder with scCC>2 antisolvent precipitation at high pressure. Papaspyrides and Kartalis [637] used dimethylsulfoxide as a solvent for PA6 and formic acid for PA6.6, and methylethylketone as the nonsolvent for both polymers. [Pg.152]

Tetravalent silicon is the only structural feature in all silicon sources in nature, e.g. the silicates and silica even elemental silicon exhibits tetravalency. Tetravalent silicon is considered to be an ana-logon to its group 14 homologue carbon and in fact there are a lot of similarities in the chemistry of both elements. Furthermore, silicon is tetravalent in all industrially used compounds, e.g. silanes, polymers, ceramics, and fumed silica. Also the reactions of subvalent and / or low coordinated silicon compounds normally lead back to tetravalent silicon species. It is therefore not surprising that more than 90% of the relevant literature deals with tetravalent silicon. The following examples illustrate why "ordinary" tetravalent silicon is still an attractive field for research activities Simple and small tetravalent silicon compounds - sometimes very difficult to synthesize - are used by theoreticians and preparative chemists as model compounds for a deeper insight into structural features and the study of the reactivity influenced by different substituents on the silicon center. As an example for industrial applications, the chemical vapor decomposition (CVD) of appropriate silicon precursors to produce thin ceramic coatings on various substrates may be mentioned. [Pg.21]

Poly(hydroxyalkanoates) (PHAs), of which poly(hydroxybutyrate) (PHB) is the most common, can be accumulated by a large number of bacteria as energy and carbon reserve. Due to their bio degradability and bio compatibility these optically active biopolyesters may find industrial applications. A general overview of the physical and material properties of PHAs, alongside with accomplished applications and new developments in this field is presented in this chapter. [Pg.260]

It should be also mentioned that an increase of activated carbon s specific surface (over activation) always leads to increase of its specific resistance. Different methods of obtaining activated carbon with an optimized volumetric structure were developed [2, 3], but they have not yet found industrial application. [Pg.44]

A classic case is an EC of a faradic type in which an electrode is comprised of Ni(OH)2, MnOOH, etc. active materials. Since in these chemistries the conductivity depends on electrode state-of-charge charge level, they require presence of additional stable conductive skeletons in their structure. Noteworthy mentioning that besides traditional forms of carbon or other conductors that may form such a skeleton, the latest progressive investigations demonstrate the possibility of application of different nanostructured forms of carbon, such as single-wall and multi-wall carbon nanotubes [4, 5], Yet, for the industrial application, highly conductive carbon powders, fibers and metal powders dominate at present. [Pg.45]

Apart from the reactions described above for the formation of thin films of metals and compounds by the use of a solid source of the material, a very important industrial application of vapour phase transport involves the preparation of gas mixtures at room temperature which are then submitted to thermal decomposition in a high temperature furnace to produce a thin film at this temperature. Many of the molecular species and reactions which were considered earlier are used in this procedure, and so the conclusions which were drawn regarding choice and optimal performance apply again. For example, instead of using a solid source to prepare refractory compounds, as in the case of silicon carbide discussed above, a similar reaction has been used to prepare titanium boride coatings on silicon carbide and hafnium diboride coatings on carbon by means of a gaseous input to the deposition furnace (Choy and Derby, 1993) (Shinavski and Diefendorf, 1993). [Pg.106]

The R,S-family 33, and of course its enantiomer, provide high enantioselectiv-ities and activities for the reductions of itaconic and dehydroamino acid derivatives as well as imines [141], The JosiPhos ligands have found industrial applications for reductions of the carbon-carbon unsaturation within a,/ -unsaturated carbonyl substrates [125, 127, 131, 143-149]. In contrast, the R,R-diastereoisomerof30 does not provide high stereoselection in enantioselective hydrogenations [125, 141]. [Pg.754]


See other pages where Industrial application carbon is mentioned: [Pg.2702]    [Pg.1]    [Pg.2149]    [Pg.106]    [Pg.644]    [Pg.3]    [Pg.560]    [Pg.814]    [Pg.1118]    [Pg.333]    [Pg.148]    [Pg.126]    [Pg.125]    [Pg.337]    [Pg.152]    [Pg.225]    [Pg.8]    [Pg.1312]    [Pg.408]    [Pg.180]    [Pg.96]    [Pg.212]    [Pg.40]    [Pg.72]    [Pg.23]    [Pg.48]    [Pg.489]    [Pg.1612]   
See also in sourсe #XX -- [ Pg.219 ]




SEARCH



Carbons, industrial

© 2024 chempedia.info