Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capillary electrophoresis electrophoretic separations

Until the appearance of capillary electrophoresis, electrophoretic separations were not canned out in columns but were performed in a flat stabilized medium such as paper or a porous semisolid gel. Remarkable separations were realized in such media, but the technique was slow, tedious, and required a good deal of operator skill. In the early 1980s,. scientists began to explore the feasibility of performing these same separations on micro amounts of sample in fused silica capillary tubes. Their results proved promising in terms of resolution, speed, and potential for automation. As a consequence, capillary electrophoresis (CE) has become an important tool for a wide variety of analytical separation problems and is the only type of electrophoresis that we will consider. [Pg.1003]

Chemical surface modifications The first surface modification for the purpose of eliminating EOF and protein adsorption was recommended by Hjerten.28 The attachment of vinyl silanes allowed the polymerization of a variety of molecules to the surface. Most of the chemical modifications used for preparing capillaries for electrophoresis originated from the experience acquired over the years preparing GC and LC stationary phases. Chemical modification should conform to certain requirements, including the prevention of adsorption, the provision of stable and constant EOF over a wide pH range, chemical stability, ease of preparation, and reproduciblity of preparation. The effects of silanization of the inner surface of capillaries on electrophoretic separations have been extensively studied.26-29... [Pg.393]

Figure 8.1. Influence of buffer pH on the effective electrophoretic mobility of a monovalent weak acid in capillary electrophoresis. The separations show the relative position of the anion (A) and a neutral compound (M), used as an electroosmotic flow marker. Figure 8.1. Influence of buffer pH on the effective electrophoretic mobility of a monovalent weak acid in capillary electrophoresis. The separations show the relative position of the anion (A) and a neutral compound (M), used as an electroosmotic flow marker.
Petersen NJ, Nikolajsen RPH, Mogensen KB et al (2004) Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoretic separation systems a closer look. Electrophoresis 2 253-269... [Pg.1487]

Solutes in capillary electrophoresis are separated in the capillary due to differences in electrophoretic mobility, or the rate of migration. In chromatography, separation is the result of interaction with the stationary phase, or the retention of the solutes. This leads to a difference in terminology for electrophoresis compared to chromatography. The identification of species is based on the migration time (t ) rather than retention time (// ), and... [Pg.538]

Capillary gel electrophoresis Electrophoretic separation performed in gel-filled capillary columns. [Pg.63]

A form of capillary electrophoresis in which separations are based on differences in the solutes electrophoretic mobilities. [Pg.604]

The heating effect is the limiting factor for all electrophoretic separations. When heat is dissipated rapidly, as in capillary electrophoresis, rapid, high resolution separations are possible. For electrophoretic separations the higher the separating driving force, ie, the electric field strength, the better the resolution. This means that if a way to separate faster can be found, it should also be a more effective separation. This is the opposite of most other separation techniques. [Pg.179]

This chapter will first cover the nature of electrophoretic separations, especially those concerning capillary electrophoresis. Comprehensive multidimensional separations will then be defined, specifically in terms of orthogonality and resolution. The history of planar and non-comprehensive electrodriven separations will then be discussed. True comprehensive multidimensional separations involving chromatography and capillary electrophoresis will be described next. Finally, the future directions of these multidimensional techniques will be outlined. [Pg.197]

The need to develop new materials for electrophoretic analysis and macromolecular separations prompted by the needs of the human genome project and the rapidly advancing fields associated with biotechnology, advances in the development of new analytical instrumentation—especially capillary electrophoresis, and practical limitations of the media currently used for gel electrophoresis [73]... [Pg.528]

Capillary electrophoretic separations are performed in small diameter tubes, made of Teflon, polyethylene, and other materials. The most frequently used material is fused silica. Fused silica capillaries are relatively inexpensive and are available in different internal and external diameters. An important advantage of a fused silica capillary is that the inner surface can be modified easily by either chemical or physical means. The chemistry of the silica surface is well established due to the popularity of silica surfaces in gas chromatography (GC) and liquid chromatography (LC). In capillary electrophoresis, the silica surface is responsible for the EOF. Using surface modification techniques, the zeta potential and correspondingly the EOF can be varied or eliminated. Column fabrication has been done on microchips.13... [Pg.392]

Simple etching of the capillary end served to decouple the electrophoretic current from that of amperometric detection, permitting quantitation of attomole levels of catecholamines from brain microdialyzates.24 A postcolumn reactor using bromine generated electrochemically in situ has been used in the detection of peptide thiols, such as glutathione and cysteine, separated by capillary electrophoresis.25... [Pg.429]

Miniaturized columns have provided a decisive advantage in speed. Uracil, phenol, and benzyl alcohol were separated in 20 seconds by CEC in an 18 mm column with a propyl reversed phase.29 A19 cm electrophoretic channel was etched into a glass wafer, filled with a y-cyclodextrin buffer, and used to resolve chiral amino acids from a meteorite in 4 minutes.30 A 6 cm channel equipped with a syringe pump to automate sample derivatization was used to separate amino acids modified with fluorescein isothiocyanate.31 Nanovials have been used to perform tryptic digests on the 15 nL scale for subsequent separation on capillary Electrophoresis.32 A microcolumn has also been used to generate fractions representing time-points of digestion from a 40 pL sample.33 A disposable nanoelectrospray emitter has been... [Pg.429]

In E. Coli bacterial lysates, the proteome (i.e., the full array of proteins produced) was analyzed by isoelectric focusing and mass spectrometry.97 A comparison of capillary electrophoretic separation and slab gel separation of a recombinant monoclonal antibody demonstrated that the precision, robustness, speed, and ease-of-use of CE were superior.98 Seventy-five proteins from the yeast ribosome were analyzed and identified by capillary electrophoresis coupled with MS/MS tandem mass spectrometry.99 Heavy-chain C-terminal variants of the anti-tumor necrosis factor antibody DE7 have been separated on capillary isoelectric focusing.100 Isoforms differing by about 0.1 pi units represented antibodies with 0,1 or 2 C-terminal lysines. [Pg.435]

McKillop, A.G., Smith, R.M., Rowe, R.C., and Wren, S.A.C., Modeling and prediction of electrophoretic mobilities in capillary electrophoresis separation of alkylpyridines, Anal. Chem. 71, 497, 1999. [Pg.437]

Lin et al. [95] used capillary electrophoresis with dual cyclodextrin systems for the enantiomer separation of miconazole. A cyclodextrin-modified micellar capillary electrophoretic method was developed using mixture of /i-cyclodextrins and mono-3-0-phenylcarbamoyl-/j-cyclodextrin as chiral additives for the chiral separation of miconazole with the dual cyclodextrins systems. The enantiomers were resolved using a running buffer of 50 mmol/L borate pH 9.5 containing 15 mmol/L jS-cyclodextrin and 15 mmol/L mono-3-<9-phcnylcarbamoyl-/j-cyclodextrin containing 50 mmol/L sodium dodecyl sulfate and 1 mol/L urea. A study of the respective influence of the /i-cyclodcxtrin and the mono-3-(9-phenylcarbamoyl-/i-cyclodextrin concentration was performed to determine the optical conditions with respect to the resolution. Good repeatability of the method was obtained. [Pg.55]

Fan et al. [106] developed a high performance capillary electrophoresis method for the analysis of primaquine and its trifluoroacetyl derivative. The method is based on the mode of capillary-zone electrophoresis in the Bio-Rad HPE-100 capillary electrophoresis system effects of some factors in the electrophoretic conditions on the separation of primaquine and trifluoroacetyl primaquine were studied. Methyl ephedrine was used as the internal standard and the detection was carried out at 210 nm. A linear relationship was obtained between the ratio of peak area of sample and internal standard and corresponding concentration of sample. The relative standard deviations of migration time and the ratio of peak area of within-day and between-day for replicate injections were <0.6% and 5.0%, respectively. [Pg.192]

Nishi et al. [110] used dextran and dextrin as chiral selectors in capillary-zone electrophoresis. Polysaccharides such as dextrins, which are mixtures of linear a-(l,4)-linked D-glucose polymers, and dextrans, which are polymers of D-glucose units linked predominantly by a-(l,6) bonds, have been employed as chiral selectors in the capillary electrophoretic separation of enantiomers. Because these polymers are electrically neutral, the method is applicable to ionic compounds. The enantiomers of basic or cationic drugs such as primaquine were successfully separated under acidic conditions. The effects of molecular mass and polysaccharide concentration on enantioselectivity were investigated. [Pg.194]

Separation by capillary electrophoresis is based on the differences in electrophoretic motilities in a solution of charged species in an electric field of small capillaries. Its... [Pg.60]


See other pages where Capillary electrophoresis electrophoretic separations is mentioned: [Pg.610]    [Pg.2]    [Pg.21]    [Pg.47]    [Pg.553]    [Pg.895]    [Pg.609]    [Pg.410]    [Pg.265]    [Pg.299]    [Pg.94]    [Pg.198]    [Pg.527]    [Pg.263]    [Pg.265]    [Pg.289]    [Pg.294]    [Pg.386]    [Pg.416]    [Pg.427]    [Pg.434]    [Pg.273]    [Pg.274]    [Pg.379]    [Pg.240]    [Pg.55]    [Pg.104]    [Pg.403]    [Pg.397]    [Pg.398]    [Pg.429]   
See also in sourсe #XX -- [ Pg.204 ]




SEARCH



Capillary electrophoretic separation

Capillary separation

Electrophoresis separations

Electrophoretic separations

Separators electrophoresis

© 2024 chempedia.info